---Supporting information---

Concise Synthesis of Azilect via Cobalt-Catalyzed Enantioselective Hydrogenation in Bio-based Solvent

Soumyadeep Chakrabortty,^a Felix J. de Zwart,^b Demi D. Snabilié,^b Ekambaram Balaraman,^c Joost N. H. Reek,^b Bas de Bruin,^b Johannes G. de Vries^{*a}

^[a] Soumyadeep Chakrabortty, Ekambaram Balaraman, Johannes G. de Vries

Leibniz Institute for Catalysis e.V.

Albert-Einstein-Strasse 29a,18059 Rostock

Email: Johannes.deVries@catalysis.de

^[b] Felix J. de Zwart, Demi D. Snabilié, Joost N. H. Reek, Bas de Bruin

Van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904,

1098 XH Amsterdam, The Netherlands.

^[c] Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.

Table of Contents

1.	General information	2
2.	Indanone derived carbocyclic enamide synthesis and analytical data	3
З.	Additional reaction optimization parameters	15
4.	General procedure for asymmetric hydrogenation (AH)	19
5.	Synthesis of Co-BPE complexes	20
6.	EPR experiments for mechanistic studies	23
7.	Analytical data of the indanone-amides	26
8.	Synthetic protocol for Rasagiline synthesis	37
9 .	Deuteration of 1a and analytical data	42
10.	Chiral HPLC traces	46
11.	Chiral GC traces	62

1. General information

Chemical and solvents

All the reactions have been carried out using standard Schlenk techniques or under inert atmosphere in N_2 – filled glove box, unless noted otherwise. All the chemicals used were commercial grade and utilized without further purifications. All the chiral ligands have been purchased from Strem chemicals and directly used for further catalytic reactions. 2-Me THF was purchased from Merck (anhydrous and inhibitor free) and directly used for catalysis. All the other solvents were pre-dried with Solvent Purification System (SPS) from MBraun (MB SPS-800, with standard MBraun drying columns) as required. All the solvents were stored on activated 3 Å molecular sieves and degassed by sparging with argon before using in catalysis.

NMR spectroscopy

NMR spectra were recorded on Bruker Avance 300 (¹H: 300, ¹³C: 75, ³¹P: 121 MHz), Bruker Fourier 300 (¹H: 300, ¹³C: 75, ³¹P: 121 MHz) or Avance 400 (¹H: 400, ¹³C: 100, ³¹P: 161 MHz) instruments operating at the denoted spectrometer frequency given in megahertz (MHz) for the specified nucleus.

EPR spectroscopy

EPR measurements were performed in air-tight high-pressure tube (Wilmad 734-PV-7) in an atmosphere of purified argon. Frozen solution EPR spectra were recorded on a Bruker EMX-plus CW X-band spectrometer equipped with a Bruker ER 4112HV-CF100 helium cryostat.

High performance liquid chromatography (HPLC)

The chiral amides have been analyzed with chiral column in Agilent 1200 series HPLC. Method and column information have already been described in the HPLC traces.

Gas chromatography (GC)

The samples have been analyzed with Agilent HP6890 instrument with FID detector and a column. *HP5 (30 m x 250 mm x 0.25 \mum)*: Front Injector Syringe Size 10 μ L, Syringe 10 μ L Agilent G4513-80203, Injection Volume 1 μ L, Front SS Inlet He, Mode Split Heater On 250 °C

SI-2

Pressure On 0.60993 bar, Total Flow On 86.971 mL/min, Septum Purge Flow On 3 mL/min Pressure 0.60993 bar, Flow 1.6465 mL/min, Average Velocity 29.749 cm/sec Run Time 33.5 min

CP-Chirasil-Dex CB (25.955m x 320 \mum x 0.25 \mum): Flow 3 mL/min, Pressure 13.698 psi, Avg vel. 51.506 cm/sec, Initial 100 °C-hold 5 min, ramp (5 °C/min) 150 °C-hold 30 min, ramp (5 °C/min) 180 °C-hold 5°C, runtime 56 min

2. Indanone derived carbocyclic enamide synthesis and analytical data

Figure S 1 General procedure for substrate synthesis

Indanone-enamide synthesis: Using the Ti-method (Ref. J. T. Reeves, Z. Tan, Z. S. Han, G. Li, Y. Zhang, Y. Xu, D. C. Reeves, N. C. Gonnella, S. Ma, H. Lee, B. Z. Lu and C. H. Senanayake, Angew. Chem. Int. Ed., 2012, 51, 1400-1404. ()

To a dry 50 mL Schlenk flask equipped with a magnetic stir bar was charged indanone derivative (1.17 mL, 10.0 mmol, 1 equiv.) and toluene (5 mL). The resultant solution was stirred and cooled in an

ice/water bath. To the cold stirring solution was added 7N NH₃ in MeOH (2.14 mL, 15.0 mmol, 1.5 equiv.) followed by dropwise addition of Ti(Oi-Pr)₄ (5.92 mL, 20.0 mmol, 2.0 equiv.) maintain the inert conditions. After 10 min, the ice/water cooling bath was removed, and the solution was stirred at rt for 18-24 h. The reaction mixture was then cooled in an ice/water bath (~5 $^{\circ}$ C) and treated with Et₃N (5.58 mL, 40.0 mmol, 4.0 equiv.) followed by Ac₂O (1.89 mL, 20.0 mmol, 2.0 equiv.). The cooling bath was then removed, and the solution was stirred at rt for 1-3 h. The reaction mixture was then treated with EDTE (4.51 mL, 21.0 mmol, 2.1 equiv.) at rt, and the solution was then heated at about 55 °C for 15 min The reaction mixture was allowed to cool to rt and was then poured into a separatory funnel containing a solution made from water (30 mL) and NH₄OH (10 mL) and also EtOAc (50 mL). Additional water and EtOAc were used to rinse all the flask contents into the separatory funnel. The mixture was shaken, and from the resultant two clear phases the lower aqueous phase was removed. The aqueous phase was extracted in dichloromethane or ethyl acetate. The combined organic extracts were dried (MgSO₄), filtered, and concentrated to give the crude product (as mostly dark solid). Purification by flash chromatography on SiO₂ (hexanes/EtOAc, 90:10 to 60:40) gave the corresponding enamides (1.31 g, 60-75% yield). The isopropyl and phenyl derivative can easily be synthesized upon using the corresponding anhydride derivatives.

Analytical data of the enamides:

N-(1H-inden-3-yl)acetamide
 NHAc

¹H NMR (300 MHz, CD₂Cl₂) δ; 7.70 (br, 1H), 7.50-7.48 (m, 1H), 7.38-7.23 (m, 2H), 6.83 (t, J = 2.47 Hz, 1H), 3.43 (dd, J = 2.44 Hz, 2H), 2.21 (s, 3H).

¹³C NMR (75 MHz, CD₂Cl₂) δ; 168.66, 142.90, 139.79, 125.94, 125.36, 124.19, 116.31, 115.27, 36.48, 23.93.

HRMS: m/z calculated for C₁₁H₁₁NO: 174.21 [M+H]⁺; observed 174.31.

Chemical Shift

Figure S 2 ¹H NMR of 1a

-168.66 -142.90 ~ 139.79 ~ 139.79 ~ 125.36 ~ 124.19 ~ 116.31 ~ 115.27	54.17 CD2Cl2 53.81 CD2Cl2 53.45 CD2Cl2 53.09 CD2Cl2 52.73 CD2Cl2 - 36.48	23.93
--	---	-------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift

■ N-(5-methoxy-1H-inden-3-yl)acetamide

¹H NMR (300 MHz, DMSO) δ; 9.69 (br, 1H), 7.45 (d, J = 2.40 Hz, 1H), 7.32 (dd, J = 8.23 Hz, 1H),
6.80-6.76 (m, 2H), 3.80 (s, 3H), 3.38 (s, 1H), 3.29-3.28 (m, 2H), 2.13 (s, 3H).

¹³C NMR (75 MHz, DMSO) δ; 169.27, 158.88, 141.86, 137.04, 134.64, 124.73, 115.42, 111.67, 104.36, 55.78, 55.57, 35.60, 23.98, 23.33, 14.53.

HRMS: m/z calculated for $C_{12}H_{13}NO_2$: 204.29 [M+H]⁺; observed 204.26

N-(6-methoxy-1H-inden-3-yl)acetamide
 NHAc

¹**H NMR** (300 MHz, DMSO) δ; 9.68 (br, 1H), 7.66 (d, J= 8.43 Hz, 1H), 7.08 (s, 1H), 6.90 (dd, J = 8.41 Hz), 6.59 (m, 1H), 3.77 (s, 3H), 3.36 (m, 2H), 2.11 (s, 3H).

¹³C NMR (75 MHz, DMSO) δ; 169.25, 158.33, 144.72, 136.76, 133.50, 119.12, 112.00, 111.92,

110.69, 55.70, 36.34, 23.95.

HRMS: m/z calculated for $C_{12}H_{13}NO_2$: 204.37 [M+H]⁺; observed 204.31

N-(6-fluoro-1H-inden-3-yl)acetamide
 NHAc

¹**H NMR** (300 MHz, DMSO) δ; 9.77 (br, 1H), 7.76 (dd, J = 8.48 Hz, 1H), 7.31 (dd, J = 9.04 Hz, 1H), 7.16 (m, 1H), 6.73 (br, 1H), 3.37 (s, 3H), 2.12 (2H).

¹³C NMR (75 MHz, DMSO) δ; 169.35, 163.03, 159.84, 145.40, 145.28, 136.84, 136.81, 136.43, 119.70, 119.59, 114.18, 114.13, 113.27, 112.97, 112.09, 111.79, 36.46, 36.43, 23.92.

HRMS: m/z calculated for $C_{10}H_{10}FNO$: 192.19 [M+H]⁺; observed 192.25

N-(6-bromo-1H-inden-3-yl)acetamide

Br

¹**H NMR** (300 MHz, DMSO) δ; 9.79 (br, 1H), 7.72 (d, J= 8.19 Hz, 1H), 7.64-7.63 (m, 1H), 7.54-7.50 (m, 1H), 3.38 (s, 3H), 2.12 (s, 2H).

 ^{13}C NMR (75 MHz, DMSO) $\delta;$ 169.37, 145.40, 139.79, 136.58, 129.16, 127.37, 120.45, 118.98,

115.01, 36.41, 23.91.

HRMS: m/z calculated for $C_{11}H_{10}BrNO$: 253.19 [M+H]⁺; observed 253.36

N-(1H-inden-3-yl)isobutyramide

¹H NMR (300 MHz, CD₂Cl₂) δ; 7.54 (br, 1H), 7.51-7.48 (m, 1H), 7.33-7.30 (m, 2H), 7.29-7.23 (m, 1H), 6.85 (br, 1H), 3.43 (dd, J = 2.41 Hz, 2H), 1.25 (d, J= 6.87 Hz, 6H).

¹³C NMR (75 MHz, CD2Cl2) δ; 175.48, 142.93, 139.85, 135.65, 125.91, 125.37, 124.21, 116.16, 115.17, 36.50, 36.18, 19.47.

HRMS: m/z calculated for $C_{13}H_{15}NO$: 202.36 [M+H]⁺; observed 202.38

N-(1H-inden-3-yl)benzamide

¹H NMR (300 MHz, CD₂Cl₂) δ; 8.04 (br, 1H), 7.93-7.90 (m, 2H), 7.63-7.51 (m, \$H), 7.38-7.36 (m, 2H), 7.32-7.27 (m 1H), 7.00 (t, J = 2.42 Hz, 1H), 3.51 (dd, J = 2.47 Hz, 2H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ; 165.51, 142.96, 139.75, 135.60, 134.65, 131.89, 128.83, 126.99,

126.01, 125.54, 124.33, 116.09, 115.86, 36.64.

HRMS: m/z calculated for C₁₆H₁₃NO: 236.34 [M+H]⁺; observed 236.39

3. Additional reaction optimization parameters

Figure S 16 Additional ligand screened in this work

Entry	Ligand	Solvent	Conversion	Enantiomeric
				excess
1	(<i>S,S</i>)- ^{Ph} BPE	MeOH	-	
2	(<i>S,S</i>)- ^{Ph} BPE	i-PrOH	>99%	52:47
3	(<i>S,S</i>)- ^{Ph} BPE	tert-BuOH	75%	75:25
4	(<i>S,S</i>)- ^{Ph} BPE	TFE	-	-
5	(<i>R,R</i>)-QunioxP*	MeOH	-	-
6	(<i>R,R</i>)-QunioxP*	i-PrOH	-	-
7	(<i>R,R</i>)-QunioxP*	tert-BuOH	-	-
8	(<i>R,R</i>)-QunioxP*	TFE	-	-

Reaction condition: [Co (stearate)₂] (5 mol%), Ligand (5 mol%), [substrate]= 0.1 mmol, solvent (2 mL) , H₂ (60 bar), temperature = 60°C, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.

Table S 1 Optimization using [Co (stearate)₂]/bisphosphines

Entry	Ligand	Solvent	Conversion	Enantiomeric
				excess
1	(<i>S,S</i>)- ^{Ph} BPE	MeOH	70%	30:70
2	(<i>S,S</i>)- ^{Ph} BPE	i-PrOH	-	-
3	(<i>S,S</i>)- ^{Ph} BPE	tert-BuOH	-	-
4	(<i>S,S</i>)- ^{Ph} BPE	TFE	-	-
5	(<i>S,S</i>)- ^{Me} DuPhos	MeOH	-	-
6	(<i>S,S</i>)- ^{Me} DuPhos	i-PrOH	-	-
7	(<i>S,S</i>)- ^{Me} DuPhos	tert-BuOH	-	-
8	(<i>S,S</i>)- ^{Me} DuPhos	TFE	-	-
9	(<i>R,R</i>)-QunioxP*	MeOH	-	-
10	(<i>R,R</i>)-QunioxP*	i-PrOH	-	-
11	(<i>R,R</i>)-QunioxP*	tert-BuOH	-	-
12	(<i>R,R</i>)-QunioxP*	TFE	-	-

Reaction condition: $[CoCl_2]$ (5 mol%), Ligand (5 mol%), [substrate]= 0.1 mmol, solvent (2 mL), H₂ (60 bar), temperature = 60°C, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.

Table S 2 Optimization using [CoCl₂]/bisphosphines

Entry	Ligand	Solvent	Conversion	Enantiomeric
				excess
1	NiCl ₂	MeOH	70%	30:70
2	NiBr ₂	MeOH	-	-
3	Ni(OTf) ₂	MeOH	-	-
4	FeBr ₂	MeOH	-	-

5	FeCl ₂	MeOH	-	-
6	MnCl ₂	MeOH	-	-
7	Mn(CO)₅Br	MeOH	-	-

Reaction condition: [M] (5 mol%), (S,S)-^{Ph}BPE (5 mol%), [substrate]= 0.1 mmol, solvent (2 mL) , H₂ (60 bar), temperature = 60°C, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.

Table S 3 Optimization using other 1st row metals/bisphosphines

Entry	Ligand	Solvent	Conversion	Enantiomeric
				excess
1	(<i>S,S</i>)- ^{Ph} BPE	MeOH	>99%	10:90
2	(<i>S,S</i>)- ^{Ph} BPE	TFE	25%	8:92
3	(<i>S,S</i>)- ^{Me} DuPhos	MeOH	60%	60:40
4	(<i>S,S</i>)- ^{Me} DuPhos	TFE	-	-

Reaction condition: $[CoCl_2]$ (5 mol%), Ligand (5 mol%), [substrate]= 0.1 mmol, solvent (2 mL), H₂ (60 bar), temperature = 60°C, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.

Table S 4 Optimization using Zn-additive

l 1a	$ \begin{array}{c} O\\ NH\\ \underbrace{(Co(O)\\ }\\ \underbrace{(S,S)^{Pf}\\ }\\ \underbrace{(S,S)^{Pf}\\ iff}\\ iff, S,S)^{$	PTf) ₂] (5 mol%) BPE) (5 mol%) 0 bar), solvent 2 hrs, Zn (50 mol	0 NH () 1b
Entry	Solvent	Conversion	Enantiomeric
			excess
1	MeOH	90%	13:87
2	i-PrOH	40%	16:84
3	2-MeTHF	>99%	6:94
4	1-BuOH	90%	9:91

Reaction condition: [Co(OTf)₂] (5 mol%), (S,S)-^{Ph}BPE (5 mol%), [substrate] = 0.1 mmol, solvent (2 mL) , H_2 (50 bar), temperature = 40°C, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.

Table S 5 Optimization using other solvents and temparature

	$ \begin{array}{c} 0 \\ NH \\ \hline bisple \\ H_2 \\ 1a \\ rt, 2 \end{array} $	CoCl ₂] (5 mol hosphine (5 r (50 bar), solv 2 hrs, Zn (50 r	%) nol%) vent nol%)	NH * 1b
Entry	Ligand	Solvent	Conversion	Enantiomeric excess
1	(<i>S,S</i>)- ^{Ph} BPE	MeOH	40%	9:91
2	(<i>S,S</i>)- ^{Ph} BPE	i-PrOH	20%	6:94
3	(<i>S,S</i>)- ^{Ph} BPE	2-MeTHF	98%	8:92
4	(<i>S,S</i>)- ^{Ph} BPE	1-BuOH	90%	7:93
5	(<i>R,R</i>)- ^{iPr} BPE	MeOH	20%	n.d.
6	(<i>R,R</i>)- ^{iPr} BPE	i-PrOH	-	-
7	(<i>R,R</i>)- ^{iPr} BPE	2-MeTHF	70%	92:8
8	(<i>R,R</i>)- ^{iPr} BPE	1-BuOH	50%	91:9

Reaction condition: [Co] (5 mol%), Ligand (5 mol%), [substrate]= 0.1 mmol, solvent (2 mL) , H_2 (50 bar), temperature = rt, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.

Table S 6 Detailed solvent effect using CoCl₂ as metal precurosor

Entry	Solvent	H₂ (bar)	Conversion	Enantiomeric	
				excess	
1	MeOH	40 bar	>99%	10:90	
2	2-MeTHF	40 bar	>99%	8:92	
3	MeOH	30 bar	>99%	9:91	

4	2-MeTHF	30 bar	>99%	9:91
5	MeOH	20 bar	>99%	9:91
6	2-MeTHF	20 bar	>99%	7:93
7	MeOH	10 bar	>99%	10:90
8	2-MeTHF	10 bar	>99%	6:94
9	MeOH	5 bar	80%	10:90
10	2-MeTHF	5 bar	>99%	6:94
11ª	MeOH	10 bar	-	-
12ª	2-MeTHF	10 bar	90%	6:94
13 ^b	2-MeTHF	30 bar	30%	30:70

Reaction condition: $[Co(OTf)_2]$ (5 mol%), (S,S)-^{Ph}BPE (5 mol%), [substrate]= 0.1 mmol, solvent (2 mL), H₂ (as desired), temperature = 50°C, reaction time = 22 hrs. Conversion determined by GC and NMR analysis. Enantiomeric ratio was determined by chiral GC.^a at room temperature. ^bwithout Zn

Table S 7 Detailed solvent effect using Co(OTf)₂ as metal precurosor as different conditions

4. General procedure for asymmetric hydrogenation (AH)

SchemeS 1 General protocol for Co-catalyzed asymmetric hydrogenation of indanone derived enamides

All the hydrogenation experiments were performed in a stainless steel autoclave charged with an insert suitbale for up to 8 reaction vessels (4 mL) with teflon mini stirring bars. In a typical experiment, a reaction vessel is charged with [Co]-precursors (5 mol%) and ligand (5 mol%) and stirred for 10-15 mins in the appropriate solvent (2mL). Then the additive Zn (50 mol%) and desired substrates **Xa** (0.2 mmol) were added to the reaction vessel maintaining the inert atmosphere and the vessels were placed in the autoclave. The autoclave was purged two times with nitrogen and three times with hydrogen. Finally it was pressurized at the desired H₂ pressure at 50°C/60°C (as needed) for 22 h. After the required reaction time, the autoclave was depressurized and the reaction vessels were diluted with

EtOAc and filtered through a short pad of silica. The conversion was determined by GC, GC-MS and NMR measurement and the enantiomeric excess was measured by GC or HPLC using a chiral coloumn.

5. Synthesis of Co-^{Ph}BPE complexes

PhBPE-Co(II)-OTf₂ complex:

 $[Co(OTf)_2] + (S,S)^{Ph}BPE \xrightarrow{THF} [Co(S,S)^{Ph}BPE](OTf)_2$

```
SchemeS 2 Co-complex synthesis
```

In a glove box, (*S*,*S*)-BPE (0.2 mmol, 101 mg) and anhydrous $Co(OTf)_2$ (0.2 mmol, 73 mg) was dissolved in dry THF with a stirring bar. The reaction mixture was stirred overnight (16 h) which was turned into light pink solution. The solvent was removed and the solid was washed with ether and dried in Schlenk which afforded light violet powder. Elemental analysis $C_{36}H_{36}CoF_6O_6P_2S_2$: Calculated (%) C: 50.07, H: 4.20 S: 7.42; Observed (%) C: 50.26 H: 4.78 S: 7.038.

Figure S 17 Experimental X-band EPR spectrum of isolated [S,S-PhBPE)Co(OTf)2]

[PhBPE-Co(I)-Cl]₂ dimer Co(I)-1 synthesis:

The [^{Ph}BPE-Co(I)-Cl]₂ was synthesized according to the literature procedure via Zn-reduction. (Ref. M. R. Friedfeld, H. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik, Science 2018, 360, 888.)

In a glove box, (S,S)-^{Ph}BPECoCl₂ (0.125 mmol, 80 mg) and Zn dust <10 µm in size (0.6 mmol, 42 mg) was dissolved in dry THF and MeOH with a stirring bar. The reaction mixture was turned into a deep green solution and was stirred for 20 mins at room temperature. Then the solvent was removed and the solid was dissolved in THF and filtered under inert conditions and dried under the Schlenk line which afforded the desired [^{Ph}BPE-Co(I)-Cl]₂ as dark green solid. Elemental analysis C₆₈H₇₂Cl₂Co₂P₄: Calculated (%) C: 67.95, H: 6.04; Observed (%) C: 67.55, H: 6.26

[^{Ph}BPE-Co(benzene)]BArF, Co(I)-2 synthesis:

The cationic Co(I) complex was synthesized according to the reported procedure.

Step-1: (Ref. Zhu, D.; Janssen, F. F. B. J.; Budzelaar, P. H. M. (Py)2Co(CH2SiMe3)2. Organometallics **2010**, *29* (8), 1897-1908.)

(Py)₄CoCl₂: Anhydrous CoCl2 (1.36 g, 10.4 mmol) was transferred into a 100 mL Schlenk tube, and 15

mL of pyridine was added. The resulting suspension of initially blue solid in a pink solution was stirred

overnight at room temperature, during which the solid became pink. The solid was filtered off and dried in vacuo, giving 3.65 g (78%) of pink crude (Py)₄CoCl₂. Elemental analysis for $C_{20}H_{20}Cl_2CoN_4$: Calculated (%) C, 53.83; H, 4.52; N, 12.56; Cl, 15.89 ; Observed (%) C, 53.67; H, 4.85; N, 12.81; Cl, 16.10.

Step-2: (Ref. Zhu, D.; Janssen, F. F. B. J.; Budzelaar, P. H. M. Organometallics 2010, 29 (8), 1897-1908.)

(Py)₂CoCH₂TMS: Synthesized as literature reported procedure. (Ref. Zhu, D.; Janssen, F. F. B. J.; Budzelaar, P. H. M. Organometallics **2010**, *29* (8), 1897-1908.)

[(R,R)-(PhBPE)Co(n⁶-C₆H₆)][BArF₄]: Co(I)-2 Synthesized according to literature procedure. (Ref. MacNeil, C. S.; Zhong, H.; Pabst, T. P.; Shevlin, M.; Chirik, P. J. *ACS. Catal.* **2022**, 4680-4687.)

In a glovebox, a 25 mL Schlenk was charged with $(py)_2Co(CH_2SiMe_3)_2$ (0.065 g, 0.17 mmol) as a dark green semisolid and dissolved in 2 mL of diethyl ether. In a separate flask, (R,R)-PhBPE (0.084 g, 0.17 mmol) was weighed and dissolved in diethyl ether. The $(py)_2Co(CH_2SiMe_3)_2$ solution was added dropwise to the (R,R)-PhBPE solution. Then the color of the mixture was changed to yellow. Finally, $[(\eta^5-C_5H_5)2Fe][BArF_4]$ (0.178 g, 0.17 mmol) was weighed out as a deep blue solid and dissolved in a mixture of diethyl ether and benzene (2:1) and added dropwise to the stirring ethereal solution of (R,R)- (PhBPE)Co(CH_2SiMe_3)_2 (formed in situ), the deep blue color instantly gave way to bright yellow. The reaction mixture was stirred for 15 minutes at ambient temperature. Volatiles were removed under reduced pressure and the residue was washed with pentane (x 2) to remove ferrocene and silane byproducts. The residue was dissolved in diethyl ether and filtered through cannula and dried under reduced pressure (88% yield) of $[(R,R)-(PhBPE)Co(\eta^6-C_6H_6)][BArF_4]$ as bright yellow crystalline solid. Elemental analysis for $C_{72}H_{54}BCoF_{24}P_2$, : Calculated (%) C, 57.39; H, 3.61. Observed (%) C, 57.56; H, 3.48.

PhBPE-Co(I)-OTf , Co(I)-3 complex:

$$[Co(S,S)^{Ph}BPE](OTf)_2 \xrightarrow{THF:MeOH (1:1)} [Co(S,S)^{Ph}BPE](OTf)$$

In a glove box, (S,S)-PhBPECoOTf₂ (0.115 mmol, 100 mg) and Zn dust <10 µm in size (0.15 mmol, 11 mg) was dissolved in dry THF and MeOH with a stirring bar. The reaction mixture was stirred for 1h mins at room temperature. Then the solvent was removed and the solid was dissolved in THF and filtered under inert conditions and dried under the Schlenk line which afforded the desired PhBPE-Co(I)-OTf as light red solid. Elemental analysis C₃₅H₃₆CoF₃O₂P₂S: Calculated (%) C: 58.83, H: 5.08; Observed (%) C: 58.69, H: 5.26.

6. EPR experiments for mechanistic studies

In a prototypical measurement the sample have been prepared following different reaction set up in order to mimic the active catalytic conditions, which have been depicted as follows:

SI-23

• Experiment 1:

SchemeS 3 Experiment-1

 $[Co(OTf)_2]$ (3.6 mg) and $(S,S)^{-Ph}BPE(5.4 mg)$ were stirred for 10-15 mins in 2-MeTHF (2mL) at room temparature follwed by the addition of Zn (5-6 mg). Then the vial was transferred into a autoclave and pressurized with 10 bar

Figure S 18 Experimental X-band EPR spectrum

of H_2 and stirred the precatalyst for 1 h at 50°C. After that the reaction mixture was transferred into a EPR tube and immediately iced in liquid nitrogen and subjected to the EPR analysis.

Experiment 2:

SchemeS 4 Experiment-2

 $[Co(OTf)_2]$ (3.6 mg) and $(S,S)^{-Ph}BPE(5.4 mg)$ were stirred for 10-15 mins in 2-MeTHF (2mL) at room temparature follwed by the addition of Zn (5-6 mg) and substrate 1a (0.2 mmol). Then the vial was transferred into a autoclave and pressurized with 10 bar of H₂ and stirred the precatalyst for 2 h at 50°C. After that the reaction mixture was transferred into a EPR tube and immediately iced in liquid nitrogen and subjected to the EPR analysis.

Eperiment 3:

SchemeS 5 Experiment-3

 $[Co(OTf)_2]$ (3.6 mg) and (S,S)-^{ph}BPE(5.4 mg) were stirred for 10-15 mins in 2-MeTHF (2mL) at room temparature follwed by the addition of Zn (5-6 mg) and substrate 1a (0.2 mmol). The catalytic mixture was for 1.5 h at 50°C. After that the reaction

Figure S 20 Experimental X-band EPR spectrum

SI-24

mixture was transferred into a EPR tube and immediately iced in liquid nitrogen and subjected to the EPR analysis.

Figure S 21 Experimental X-band EPR spectrum comparison following catalytic conditions

7. Analytical data of the indanone-amides

N-(2,3-dihydro-1H-inden-1-yl)acetamide

NHAc

¹H NMR (300 MHz, CDCl₃) δ; 7.31-7.20 (m, 4H), 5.64 (br, 1H), 5.52-5.44 (m, 1H), 3.03-2.81 (m, 2H),
 2.66-2.55 (m, 1H), 2.03 (s, 3H), 1.89-1.76 (2H).

¹³C NMR (75 MHz, CDCl₃) δ; 167.89, 141.55, 141.22, 126.11, 124.87, 122.92, 122.10, 75.54,
75.11, 74.69, 52.86, 32.17, 28.31, 21.55.

Figure S 22 ¹H NMR of 1b

N-(6-methoxy-2,3-dihydro-1H-inden-1-yl)acetamide

¹**H NMR** (300 MHz, CDCl₃) δ; 7.11 (d, J = 8.09 HZ, 1H), 6.84-6.75 (m, 2H), 5.84 (br, 1H), 5.42 (q, J = 7.74 Hz, 1H), 3.77 (s, 3H), 2.94-2.71 (m, 2H), 2.62-2.51 (m, 1H), 2.01 (s, 3H), 1.85-1.73 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ; 169.86, 159.08, 144.60, 135.26, 125.37, 114.40, 108.96, 55.54, 54.87, 34.54, 29.37, 23.43.

HRMS: m/z calculated for $C_{12}H_{15}NO_2$: 206.34 $[M+H]^+$; observed 206.37

Figure S 25 ¹³C NMR of 4b

■ N-(5-methoxy-2,3-dihydro-1H-inden-1-yl)acetamide

¹H NMR (300 MHz, CDCl₃) δ; 7.18 (d, J = 7.97 Hz), 6.77-6.72 (m, 2H), 5.75 (br, 1H), 5.38 (q, J = 7.50 Hz, 1H), 3.78 (s, 3H), 2.99-2.79 (m, 2H), 2.62-2.53 (m, 1H), 2.00 (s, 3H), 1.87-1.77 (m, 1H).
¹³C NMR (75 MHz, CDCl₃) δ; 169.82, 160.01, 145.25, 135.20, 124.83, 112.93, 109.91, 55.46, 54.20, 34.36, 30.41, 23.45.

HRMS: m/z calculated for C₁₂H₁₅NO₂: 206.37 [M+H]⁺ ; observed 206.31

Figure S 26 ¹H NMR of 5b

N-(5-fluoro-2,3-dihydro-1H-inden-1-yl)acetamide

¹H NMR (300 MHz, CDCl₃) δ; 7.23-7.19 (m, 1H), 6.93-6.85 (m, 2H), 5.73 (br, 1H), 5.40 (q, J = 7.68 Hz, 1H), 3.00-2.78 (m, 2H), 2.64-2.53 (m, 1H), 2.01 (s, 3H), 1.89-1.76 (m, 1H).

 13 C NMR (75 MHz, CDCl₃) δ ; 169.87, 161.39, 145.77, 145.65, 138.74, 125.29, 125.17, 113.99,

113.69, 111.87, 111.58, 77.25, 54.03, 34.35, 30.25, 30.22, 23.40.

HRMS: m/z calculated for C₁₁H₁₂FNO: 194.36 [M+H]⁺; observed 194.39

Figure S 29 ¹³C NMR of 6b

N-(5-bromo-2,3-dihydro-1H-inden-1-yl)acetamide

¹**H NMR** (300 MHz, CDCl₃) δ; 7.37 (s, 1H), 7.34-7.30 (m, 1H), 7.14 (d, J = 8.00 Hz, 1H), 5.68 (br, 1H), 5.41 (1, J = 7.82 Hz, 1H), 3.00-2.79 (m, 2H), 2.63-2.52 (m, 1H), 2.02 (s, 3H), 1.86-1.73 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ; 169.85, 145.69, 142.29, 129.90, 128.00, 125.57, 121.91, 54.22, 34.06, 30.06, 23.42.

HRMS: m/z calculated for C₁₁H₁₂BrNO: 255.16 [M+H]⁺; observed 255.18

Figure S 32 ¹³C NMR of 7b

• *N-(2,3-dihydro-1H-inden-1-yl)isobutyramide*

¹**H NMR** (300 MHz, CDCl₃) δ; .25-7.19 (m, 3H), 5.65 (br, 1H), 5.49 (1, J = 7.888 Hz, 1H), 3.03- 2.81 (m, 2H), 2.65-2.55 (m, 1H), 2.42-2.33 (m, 1H), 1.83-1.72 (m, 1H), 1.21-1.17 (d, J = 11.92 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ; 176.77, 143.44, 127.93, 126.79, 124.82, 123.92, 54.38, 35.76, 34.16, 30.22, 19.81, 19.61.

HRMS: m/z calculated for $C_{13}H_{17}NO:204.23 [M+H]^+$; observed 204.29

N-(2,3-dihydro-1H-inden-1-yl)benzamide

¹H NMR (Xxx MHz, CDCl₃) δ; 7.82-7.77 (m, 2H), 7.54-7.35 (m, 4H), 7.29-7.20 (m, 3H), 6.36 (br, 1H),
5.71 (q, J=7.69 Hz, 1H), 3.09-2.88 (m, 2H), 2.77-2.66 (m, 1H), 1.99-1.87 (m, 1H).

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3) $\delta;$ 167.24, 143.61, 143.15, 134.52, 131.55, 128.62, 128.13, 126.96,

126.89, 124.94, 124.14, 55.19, 34.23, 30.35.

HRMS: m/z calculated for $C_{16}H_{15}NO:238.39 \ [M+H]^+$; observed 238.41

8. Synthetic protocol for Rasagiline synthesis

SchemeS 5 Azilect synthesis via C-catalyzed asymmetric hydrogenation

Step-a (Co-catalyzed asymmetric hydrogenation of 1a):

The hydrogenation experiments were performed in a stainless steel autoclave charged with an insert suitbale for up to 5 reaction vessels (7 mL) with teflon mini stirring bars. A reaction vessel is charged with [Co]-precursors (5 mol%) and ligand (5 mol%) and stirred for 10-15 mins in the 2-Me THF (5mL). Then the additive Zn (50 mol%) and desired substrates **1a** (1.0 mmol) were added to the reaction vessel maintaining the inert atmosphere and the vessels were placed in the autoclave. The autoclave was purged two times with nitrogen and three times with hydrogen. Finally it was pressurized at the 20 bar H₂ pressure at 50°C for 22 h. After the required reaction time, the autoclave was depressurized and the reaction vessels were diluted with EtOAc and filtered through a short pad of silica (96% isolated yield). The conversion was determined by GC, GC-MS and NMR measurement and the enantiomeric excess was measured by GC or HPLC using a chiral coloumn.

Step-b (deacylation of 1b)

Potassium carbonate, K_2CO_3 (3.0 mmol) was added to the MeOH/H₂O (1:1) solution of amide (1.5 mmol) and stirred for 25 hrs at 50°C. After that, the reaction mixture was concentrated in vacuum and extracted in solution of DCM and saturated sodium bicarbonate solution. The organic layer was separated and washed with brine and dried over MgSO₄ and concentrated to result the corresponding amine in 89% yield without the loss of optical purity (89% isolated yield).

¹**H NMR** (300 MHz, CDCl₃) δ; 7.35-7.32 (m, 1H), 7.24-7.19 (m, 3H), 4.38-4.33 (m, 1H), 3.01-2.93 (m, 1H), 2.85-2.77 (m, 1H), 2.56-2.47 (m, 1H), 1.74-1.64 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ; 147.49, 143.12, 127.19, 126.50, 124.69, 123.32, 57.31, 37.40, 30.13.

 $[\alpha]_{D}^{298} = -15.4^{\circ} (c \ 1.5, methanol)$

Figure S 37 ¹³C NMR of 1c

Step-c (propargylation of 1c)

Potassium carbonate (1.1 eqv) was added to the solution of **1c** (1 eq.) in 10 mL in acetonitrile. Propargyl bromide (1.05 eq.) was added to the reaction mixture and stirred at 30°C for 12 h. The solid was filtered off and solvent was removed. The residue was further purified via flash column (EtOAc: Hexane , 30%) as yellow oil in 81% yield (98% ee).

¹**H NMR** (300 MHz, CDCl₃) δ; 7.37-7.33 (m, 1H), 7.26-7.18 (m, 3H), 4.38 (t, 1H, J= 6.7 Hz), 3.53 (dd, 2H, J=2.4 Hz), 3.10-3.00 (m, 1H), 2.88-2.78 (m, 1H), 2.46-2.34 (m, 1H), 2.26 (t, 1H, J= 2.45 Hz), 1.91-1.81 (m, 1H), 1.65 (s, 1H).

¹³C NMR (75 MHz, CDCl₃) δ; 144.52, 143.84, 127.66, 126.28, 124.89, 124.21, 82.51, 71.43, 61.90, 36.19, 33.35, 30.48.

 $[\alpha]_{D}^{298} = +17.9^{\circ} (c \ 0.2, chloroform)$

HRMS: m/z calculated for $C_{12}H_{14}N$: 172.2490 [M+H]⁺; observed 172.2468

HPLC: Cellulose-3

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 2 Chemical Shift

Figure S 39 ¹³C NMR of 1d

9. Deuteration of 1a and analytical data

SchemeS 6 Asymmetric deuteration of 1a using Co/BPE precatalyst

Protocol for deuteration:

The deuteration experiment was performed in a stainless steel autoclave charged with an insert suitbale for up to 8 reaction vessels (4 mL) with teflon mini stirring bars. In the experiment, a reaction vessel is charged with [Co (OTf)₂]-precursor (5 mol%) and (*S*,*S*)-^{ph}BPE (5 mol%) and stirred for 10-15 mins in 2-Me THF (2mL). Then the additive Zn (50 mol%) and desired substrates **1a** (0.5 mmol) were added to the reaction vessel maintaining the inert atmosphere and the vessels were placed in the autoclave. The autoclave was purged two times with nitrogen. Finally it was pressurized at the 15 bar of D₂ pressure at 50°C for 20 h. After that, the autoclave was depressurized and the reaction vessels were diluted with EtOAc and filtered through a short pad of silica. The conversion was determined by GC and GC-MS measurement. The *d*-incorporation was analysed via NMR analysis (95% isolated yield).

Figure S 41 ¹³C NMR of 1b-d₂

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 Chemical Shift

Figure S 43 ¹³C NMR Hydrogen vs Deuteration experiments of 1a

Figure S 44 ¹H NMR of 1b-d₂ (snapshot with characteristic peak region)

Figure S 45 Possible pathway of the hydrogenation of 1a


```
-----
Acq. Operator : Analytik
                                        Seq. Line : 5
Acq. Instrument : LC5
                                         Location : Vial 1
Injection Date : 4/13/2023 8:21:56 PM
                                             Inj: 1
                                        Inj Volume : 0.2 µl
Acq. Method
             : C:\CHEM32\1\METHODS\OD-H.M
            : 4/13/2023 12:39:49 PM by Analytik
Last changed
Analysis Method : C:\CHEM32\1\METHODS\OD-H.M
Last changed
            : 4/14/2023 9:58:52 AM by Analytik
               (modified after loading)
            : OD-H, Hept./EtOH 90:10, 0.3ml/min
Method Info
```


_____ Area Percent Report --------

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier 8	Dilution	Factor with	ISTDS

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.067	BB	0.3994	4192.35938	159.12187	50.1585
2	21.682	BB	0.5460	4165.86035	116.84090	49.8415

Totals : 8358.21973 275.96278

Figure S 46 HPLC trace of rac-4b

```
------
Acq. Operator : Analytik
                                        Seq. Line : 4
Acq. Instrument : LC5
                                         Location : Vial 2
Injection Date : 4/13/2023 7:25:53 PM
                                             Inj: 1
                                       Inj Volume : 0.2 µl
Acq. Method
             : C:\CHEM32\1\METHODS\OD-H.M
Last changed
            : 4/13/2023 12:39:49 PM by Analytik
Analysis Method : C:\CHEM32\1\METHODS\OD-H.M
Last changed
             : 4/14/2023 9:58:52 AM by Analytik
              (modified after loading)
Method Info
           : OD-H, Hept./EtOH 90:10, 0.3ml/min
```

Area Percent Report ------

Sorted By	:	Signa	1
Multiplier	:	1.000	9
Dilution	:	1.000	9
Use Multiplier &	Dilution	Factor w	ith ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.053	FM	0.4941	2495.70776	84.18707	94.7734
2	21.722	MM	0.5046	137.63455	4.54607	5.2266

Totals : 2633.34232 88.73314

Figure S 47 HPLC trace of enantioenriched-4b

Figure S 48 HPLC trace of rac-5b

Figure S 49 HPLC trace of enantioenriched-5b

NHAc

F

=====				===		-	
Acq.	Operator	:	Analytik S	Seq	. Line	:	6
Acq.	Instrument	:	LC5	Lo	cation	:	Vial 11
Inje	tion Date	:	4/12/2023 8:28:59 PM		Inj	:	1
			Ir	nj	Volume	:	1.0 µl
Acq.	Method	:	C:\CHEM32\1\METHODS\0J-H.M				
Last	changed	:	4/12/2023 4:15:30 PM by Analytik	k			
			(modified after loading)				
Analy	sis Method	:	C:\CHEM32\1\METHODS\0J-H.M				
Last	changed	:	4/13/2023 9:32:26 AM by Analytik	k			
			(modified after loading)				
Metho	od Info	:	OJ-H, Hept./EtOH 98:2, 2ml/min				

_____ Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	1	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDS

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.858	BB	0.5439	917.46997	24.55559	49.8467
2	30.579	вв	0.6184	923.11475	18.24245	50.1533

Totals : 1840.58472 42.79804

Figure S 50 HPLC trace of rac-6b

Area Percent Report

30

40

50

60

Sorted By		:	Sig	nal	
Multiplie	r	:	1.00	999	
Dilution		:	1.04	999	
Use Multi	plier &	Dilution	Factor	with	ISTDS

10

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.210	MM	0.6124	358.22171	9.74888	10.0274
2	30.849	мм	0.8601	3214.20923	62.28588	89.9726
Total	ls :			3572.43094	72.03476	

Figure S 51 HPLC trace of enantioenriched-6b

	==			-		==		
Acq. Operator	:	Analytik	Seq		Line	:	4	
Acq. Instrument	:	LC5	LO	ca	tion	:	Vial	12
Injection Date	:	4/12/2023 6:16:50 PM			Inj	:	1	
			Inj	Vo	lume	:	1.0	μl
Acq. Method	:	C:\CHEM32\1\METHODS\0J-	н.м					
Last changed	:	4/12/2023 4:15:30 PM by	Analytik					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\0J-	н.м					
Last changed	:	4/13/2023 9:32:26 AM by	Analytik					
		(modified after loading)					
Method Info	:	0J-H, Hept./EtOH 98:2,	2ml/min					
Additional Info	:	Peak(s) manually integr	ated					
DAD1 C, S	ig-	210,8 Ref=360,100 (2304\2304000121	10.D)	_		_		
mAU 3								
175-								

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier		:	1.00	888	
Dilution		:	1.0	999	
Use Multiplier	8	Dilution	Factor	with	ISTDS

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	36.790	MM	1.1008	1786.29065	27.04559	50.3908
2	53.141	мм	1.6715	1758.58386	17.53542	49.6092
2	53.141	ММ	1.6715	1758.58386	17.53542	49.609

Totals : 3544.87451 44.58101

Figure S 52 HPLC trace of rac-7b

Acq. Operator	:	Analytik Seq. Line : 2
Acq. Instrument	: :	LC5 Location : Vial 22
Injection Date	:	4/12/2023 4:04:40 PM Inj: 1
		Inj Volume : 1.0 µl
Acq. Method	:	C:\CHEM32\1\METHODS\0J-H.M
Last changed	:	4/12/2023 4:15:30 PM by Analytik
		(modified after loading)
Analysis Method	1:	C:\CHEM32\1\METHODS\0J-H.M
Last changed	:	4/13/2023 9:32:26 AM by Analytik
		(modified after loading)
Method Info	:	0J-H, Hept./EtOH 98:2, 2ml/min

_____ Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU+s]	[mAU]	%
1	36.036	BB	0.7318	870.04547	14.06362	20.9967
2	51.411	MM	1.5516	3273.68555	35.16568	79.0033

Totals : 4143.73102 49.22931

Figure S 53 HPLC trace of enantioenriched-7b

Acq. Operator	:	Analytik	Se	q. Line	:	5	
Acq. Instrument	:	LC5	L	ocation	:	Vial	11
Injection Date	:	2/8/2023 8:25:14 PM		Inj	:	1	
			Inj	Volume	:	1.0	μl
Acq. Method	:	C:\CHEM32\1\METHODS\AD-H.M					
Last changed	:	2/8/2023 4:22:23 PM by Analy	ytik				
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\AD-H.M					
Last changed	:	2/9/2023 2:31:19 PM by Analy	ytik				
		(modified after loading)					
Method Info	:	AD-H, Hept./EtOH 95:5, 1ml,	/min				

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDS

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----

 1
 6.853
 BB
 0.2751
 4935.68701
 278.06674
 50.0328

 2
 8.387
 BB
 0.3416
 4929.20898
 223.23030
 49.9672

Totals : 9864.89600 501.29704

Figure S 54 HPLC trace of rac-2b

Figure S 55 HPLC trace of enantioenriched-2b

Figure S 56 HPLC trace of rac-3b

Figure S 57 HPLC trace of enantioenriched-3b

 NH_2

	-					
Acq. Operator	:	Analytik Seq. Line : 5				
Acq. Instrument	:	LC5 Location : Vial 1				
Injection Date	:	5/5/2023 1:53:33 PM Inj: 1				
		Inj Volume : 1.0 µl				
Different Inj V	010	ume from Sequence ! Actual Inj Volume : 3.0 µl				
Acq. Method	:	C:\CHEM32\1\METHODS\CELLULOSE4.M				
Last changed	.ast changed : 5/5/2023 1:08:04 PM by Analytik (modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\CELLULOSE4.M				
Last changed	:	5/5/2023 3:30:17 PM by Analytik (modified after loading)				
Method Info	:	AS-H , Hept./EtOH 90:10, 1ml/min				

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type Width Area Height Area [min] [mAU*s] % # [min] [mAU] -----| 1 13.150 BB 0.7584 4205.29346 82.53555 50.8551 2 15.928 BB 0.7850 4063.86719 68.21700 49.1449

Figure S 58 HPLC trace of rac-1c

					_	
Acq. Operator	:	Analytik	Sec	q. Line	:	4
Acq. Instrument	:	LC5	Lo	ocation	:	Vial 2
Injection Date	:	5/5/2023 1:07:28 PM		Inj	:	1
			Inj	Volume	:	1.0 µl
Acq. Method	:	C:\CHEM32\1\METHODS\CELLU	LOSE4.M			
Last changed	:	5/5/2023 1:08:04 PM by An	alytik			
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\CELLU	LOSE4.M			
Last changed	:	5/5/2023 3:30:17 PM by An	alytik			
		(modified after loading)				
Method Info	:	AS-H , Hept./EtOH 90:10,	1ml/min			

Figure S 59 HPLC trace of enantioenriched-1c

NH

	==			-	
Acq. Operator	:	Analytik Seq. Li	ne	:	2
Acq. Instrument	:	LC5 Locatio	on	:	Vial 11
Injection Date	:	4/11/2023 12:31:11 PM II	nj	:	1
		Inj Volu	me	:	0.2 µl
Acq. Method	:	C:\CHEM32\1\METHODS\CELLULOSE3.M			
Last changed	:	4/11/2023 12:27:12 PM by Analytik			
		(modified after loading)			
Analysis Method	:	C:\CHEM32\1\METHODS\CELLULOSE3.M			
Last changed	:	4/11/2023 2:16:15 PM by Analytik			
		(modified after loading)			
Method Info	:	Cellulose 3 , Hept./EtOH 95:0,5, 0.5ml	/mi	in	

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Use Multiplier &	Dilution	Factor with ISTDs

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] % [mAU] 1 8.319 BB 0.1769 476.05875 41.16010 50.1582 2 9.885 BB 0.2139 473.05508 34.09518 49.8418

Totals : 949.11383 75.25528

Figure S 60 HPLC trace of rac-1d

Figure S 61 HPLC trace of enantioenriched-1d

11. Chiral GC traces

-

- SVETEM		
. aranch		
: GC 8890	Location :	34 (F)
: 4/7/2022 4:58:50 PM	Inj :	1
	Inj Volume : 1	1 μ 1
: D:\ChemStation\1\Data\22 m1.M	2-04\install 2022-04-	07 14-59-05\alpha-enamide_FID
: 4/7/2022 4:31:33 PM by 5	SYSTEM	
: D:\ChemStation\1\Data\22 m1.M (Sequence Method)	2-04\install 2022-04	07 14-59-05\alpha-enamide_FID
: 4/8/2022 8:33:37 AM by 5 (modified after loading)	SYSTEM	
: alpha-enamide-AH		
: SDC-1-indanone enamide		
: Peak(s) manually integra	ated	
k Signal (22-04/install 2022-04-07 14-59-	05%3DC-1-Indanone enamide.D)	
	Part State 2. 194	
	<pre>. GC 3050 : 4/7/2022 4:58:50 PM : D:\ChemStation\1\Data\22 m1.M : 4/7/2022 4:31:33 PM by 9 : D:\ChemStation\1\Data\22 m1.M (Sequence Method) : 4/8/2022 8:33:37 AM by 9 (modified after loading) : alpha-enamide-AH : SDC-1-indanone enamide : Peak(s) manually integrs k Ognal(22-04/nstal 2022-04-07 14-59-</pre>	<pre>. GC 8050 Internation () Construction () Internation () Inter</pre>

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000

```
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

```
Signal 1: FID1 B, Back Signal
```

Peak	RetTime	Туре	Width	Area	Height	Area
	[min]		[min]	[pA*s]	[pA]	»
1	23.032	им т	0.1121	31.59302	4.69630	49.57137
2	24.336	MM T	0.1225	32.13937	4.37179	50.42863
Total	ls :			63.73240	9.06808	

```
13
```

```
Figure S 62 Chiral GC trace of rac-1b
```


Figure S 63 Chiral GC trace of enantioencihed-1b

```
Acq. Operator : SYSTEM
                                         Seq. Line : 1
Sample Operator : SYSTEM
Acq. Instrument : GC 8890
                                          Location : 2 (F)
Injection Date : 2/21/2023 5:58:01 PM
                                              Inj: 1
                                        Inj Volume : 1 µl
             : D:\ChemStation\1\Data\DEF_GC 2023-02-21 17-55-58\alpha-enamide_FID-m1.M
Acq. Method
Last changed
            : 10/21/2022 10:09:04 AM by SYSTEM
Analysis Method : D:\ChemStation\1\Data\DEF_GC 2023-02-21 17-55-58\alpha-enamide_FID-m1.M (
              Sequence Method)
             : 4/15/2023 4:38:16 PM by SYSTEM
Last changed
               (modified after loading)
Method Info
            : alpha-enamide-AH
Sample Info : SDC-RH-563
```


Signal 1: FID1 B, Back Signal Peak RetTime Type Width Area Height # [min] [min] [pA*s] [pA] 0.1903 6.08577 5 0.2508 85.44192 1 22.687 MM 6.08577 5.32949e-1 6.64910 2 23.925 MM 5.67737 93.35090

91.52768 6.21032 Totals :

Figure S 64 Chiral GC trace of enantioencihed-1b

Area

%

```
Acq. Operator : SYSTEM
                                         Seq. Line : 1
   Sample Operator : SYSTEM
                                          Location : 1 (F)
   Acq. Instrument : GC 8890
   Injection Date : 4/2/2023 12:04:03 PM
                                             Inj: 1
                                         Inj Volume : 1 µl
               : D:\ChemStation\1\Data\DEF_GC 2023-04-02 12-01-51\alpha-enamide_FID-m1.M
   Acq. Method
               : 10/21/2022 10:09:04 AM by SYSTEM
   Last changed
   Analysis Method : D:\ChemStation\1\Data\DEF_GC 2023-04-02 12-01-51\alpha-enamide_FID-m1.M (
                 Sequence Method)
   Last changed
              : 4/2/2023 3:16:20 PM by SYSTEM
                 (modified after loading)
   Method Info
               : alpha-enamide-AH
   Sample Info
             : SDC-1a-R-amide
   Additional Info : Peak(s) manually integrated
         FID1 B, Back Signal (DEF_GC 2023-04-02 12-01-51\SDC-1a-R-amide.D)
       DA T
       35 -
       30 -
       25 -
       20
                                   23.859
       15 -
       10
÷
                                                        35
                                                                  40
                  15
                                               зю
                                                                           45
   Area Percent Report
   Sorted By
                    :
                         Signal
   Multiplier
                         1,0000
                    :
   Dilution
                         1.0000
                    :
   Use Multiplier & Dilution Factor with ISTDs
  Signal 1: FID1 B, Back Signal
     Peak RetTime Type Width
                            Area
                                     Height
                                             Area
                    [min] [pA*s]
      # [min]
                                     [pA]
                                               %
     -----
       1 23.859 88 0.1987 127.26900
                                     9.01262 1.000e2
     Totals :
                           127.26900
                                     9.01262
  .....
```

Figure S 65 Chiral GC trace of enantioencihed-1b (recrystallized)

```
_____
Acq. Operator : SYSTEM
                                             Seq. Line : 2
Sample Operator : SYSTEM
                                               Location : 2 (F)
Inj: 1
Acq. Instrument : GC 8890
Injection Date : 4/2/2023 1:02:59 PM
                                             Inj Volume : 1 µl
Acq. Method
            : D:\ChemStation\1\Data\DEF_GC 2023-04-02 12-01-51\alpha-enamide_FID-m1.M
             : 10/21/2022 10:09:04 AM by SYSTEM
Last changed
Analysis Method : D:\ChemStation\1\Data\DEF_GC 2023-04-02 12-01-51\alpha-enamide_FID-m1.M (
                Sequence Method)
Last changed
              : 4/2/2023 3:19:01 PM by SYSTEM
                (modified after loading)
Method Info
               : alpha-enamide-AH
Sample Info
            : SDC-1a-S-amide
Additional Info : Peak(s) manually integrated
        FID1 B, Back Signal (DEF_GC 2023-04-02 12-01-51\SDC-1a-S-amide.D)
    pA ]
    35
    30
    25
                                   22,603
    20
    15
     10
                  15
                             20
                                                    30
                                                               35
                                                                           40
                                                                                      45
```

Area Percent Report

Sorted By		:	Signa	al	
Multiplier		:	1.000	90	
Dilution		:	1.000	90	
Use Multiplier	&	Dilution	Factor w	with	ISTDS

Signal 1: FID1 B, Back Signal

```
.
```

2

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	%
1	22.603	BB	0.1928	168.32930	11.91964	1.000e2

168.32930 11.91964

Totals :

Figure S 66 Chiral GC trace of enantioencihed-1b (recrystallized)

Figure S 67 Chiral GC trace of crude reaction using Co(I)-1 as precatalyst (as shown in Figure 7)

Figure S 68 Chiral GC trace of crude reaction using **Co(I)-2** as precatalyst (as shown in Figure 7)

Acq. Operator	: SYSTEM Seq. Line : 1
Sample Operator	: SYSTEM
Acq. Instrument	: GC 8890 Location : 1 (F)
Injection Date	: 7/3/2023 9:59:53 AM Inj: 1
	Inj Volume : 1 µl
Acq. Method	: D:\ChemStation\1\Data\DEF_GC1 2023-07-03 09-57-05\alpha-enamide_FID-m1-N2-a .M
Last changed	: 6/30/2023 1:25:32 PM by SYSTEM
Analysis Method	: D:\ChemStation\1\Data\DEF_GC1 2023-07-03 09-57-05\alpha-enamide_FID-m1-N2-a .M (Sequence Method)
Last changed	: 7/3/2023 11:07:18 AM by SYSTEM (modified after loading)
Method Info	: alpha-enamide-AH
Sample Info	: SDC-1indaone substrate

A	rea Percent	Report	

Sorted By	:	Signal	Č.	
Multiplier	:	1.0000		
Dilution	:	1.0000	9	
Use Multiplier &	Dilution	Factor wi	th ISTDs	

Signal 1: FID1 B, Back Signal

Figure S 69 Chiral GC trace of substrate 1a