Supporting Information

Intermetallic PdCu₃ Supported on Nanodiamond-Graphene

for Semi-hydrogenation of Phenylacetylene

Xiaoran Niu,^{a,b} Ao Wang,^b Lei Tong,*^b Lei Wang,^c Yuan Kong,*^b Chenliang Su^a and Hai-Wei Liang*^b

¹ International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;

² Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.

³ School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.

E-mail: ltong17@mail.ustc.edu.cn (L. Tong); kongyuan@ustc.edu.cn; hwliang@ustc.edu.cn (H.-W. Liang).

Experimental section

The TOF calculation methods were provided in supporting information. $TOF(h^{-1}) = \frac{rate \ of \ product \ formation \ (styrene)}{mole \ of \ active \ site}$ (1)

The Pd loading is used as the number of active sites in the TOF calculation process.

Figure S1. (a, b) HRTEM images of ND@G (a) and OLC (b). (c, d) Nitrogen adsorptiondesorption isotherms of ND@G (c) and OLC (d).

Figure S2. HADDF-STEM (a,c,d) and HRTEM (b) images of $PdCu_3/ND@G$; insets in a and d are the corresponding particle size distribution and the FFT pattern of $PdCu_3/OLC$.

Figure S3. (a-c) Time-on-stream conversion and selectivity of phenylacetylene over Pd/ND@G (a), PdCu/ND@G (b), and commercial Lindlar catalysts (c).

Figure S4. The (111) plane of intermetallic PdCu₃

Figure S5. (a-c) Pictorial models for PdCu₃/OLC (a), PdCu₃/ND@G (b), and Pd (c), and their corresponding adsorption structure of $C_8H_6^*$, $C_8H_6^*H$, $C_8H_7^*$, $C_8H_7^*H^*$, $C_8H_8^*$, $C_8H_8^*H^*$, $C_8H_9^*$, $C_8H_9^*H^*$, and $C_8H_{10}^*$.

Figure S6. the adsorption energetics of $C_8H_6{}^*$, $C_8H_8{}^*$, and $C_8H_{10}{}^*$ on Pd, PdCu_3/OLC, and PdCu_3/ND@G.

ΔG	Pd	PdCu ₃ /OLC	PdCu ₃ /ND@G
ΔG_1	1.96	0.73	0.49
ΔG_2	0.28	0.15	0.55
ΔG_3	0.41	0.87	1.19
ΔG_4	0.46	0.04	0.31
ΔG_5	0.19	1.11	1.37
ΔG_{6a}	0.41	0.19	0.49
ΔG_{6b}	1.46	1.06	0.73
ΔG_7	0.27	0.01	0.3
ΔG_8	1.16	1.16	1.76
ΔG_9	1.42	1.63	2.67
ΔG_{10}	0.94	0.43	0.53

Table S1. The change in Gibbs free energy for each elementary reaction.