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S1. Experimental section

S1.1 Physicochemical Methods

Powder X-ray diffraction (PXRD) data were obtained using a PANalytical Empyrean
(PIXcel 3D detector) system equipped with Cu Ko, (A=1.54 A) radiation. The operating voltage
and current were 40 kV and 30 mA, respectively. A step size of 0.04° with a step time of 2
seconds was used for data collection. FTIR analysis of the samples was recorded on self-
supporting wafers prepared as KBr pellets using a Perkin-Elmer GX FTIR spectrometer in the
region of 400—4000 cm™! with KBr in a 1:20 weight ratio. The morphology of the synthesized
catalyst was obtained by Scanning Electron Microscopy (SEM) images which were recorded
on a JEOL JSM 7100F microscope, using an accelerating voltage of 18 kV and a probe current
of 102 A. Samples were prepared by dispersing in isopropyl alcohol (IPA), and a drop of the
suspension added to the SEM copper grid. The transmission electron microscopy (TEM), high-
resolution TEM observation was acquired on JEOL, JEM 2100 with an electron acceleration
energy of 200 kV. The samples were ultrasonically dispersed in IPA for 30 min and deposited
on the carbon coated Lacey 200 mesh Cu grid and dried overnight. Specific surface area and
pore size analysis of the samples were measured by nitrogen adsorption at -196 °C using a
sorptometer (ASAP-2010, Micromeritics). The samples were degassed under vacuum at 200
°C for 3h before measurements to expel the interlayer water molecules. The X-ray
photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher Nexsa
spectrometer equipped with monochromatic Al Ka radiation of energy 1486.6 eV. The pass
energy for the survey was set at 400 eV and the pass energy for the narrow scan was set at 50
eV. The dual-beam charge neutralization was used for both low-energy electrons and ions. The
sample surface is at a 90° angle with the axis of the input lens. Further, the individual core-
level spectra were checked for charging using Cls at 284.8 eV as standard and corrected if
needed. The peak fitting of the individual core levels was done using Avantage software.
Hydrogen Temperature Programmed Reduction (H,-TPR) analysis data were obtained using
Micrometrics® Autochem II 2920 instrument. In the U-shaped quartz tube, 0.1 g of sample
was placed over a layer of quartz wool. The catalyst was purged first with helium flow for 2 h
and then cooled to ambient temperature. The catalysts were then exposed to a 50 mL.min"!
flow of 20% H, in helium as the temperature was linearly increased to 900 °C at a 10 °C.min
! ramping rate. The thermal conductivity detector (TCD) observed the changes in the effluent's

H, concentration.
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Temperature-Programmed Desorption (TPD) of CO, was also performed on the
Micrometrics® Autochem II 2920 instrument. 0.1 g of sample was placed in the U-shaped
quartz tube over a layer of quartz wool. First, 25 mL.min"! of helium flow was introduced for
60 min at 200 °C with a 5 °C.min"! ramp rate. Afterward, the sample was cooled in 50 mL.min"!
helium flow till 100 °C. For adsorption of NH; and CO,, 40 mL.min"!' flow of CO,; in helium
was introduced into the reactor at 100 °C for 30 min. Then, 40 mL.min"! of helium flow was
fed for 60 min to get rid of physically adsorbed species. Finally, desorption was studied with 5
°C-min’! heating rate until 850 °C. Gases were analyzed on a TCD, with helium used as a
reference gas. The reaction mixture was collected and analyzed using a gas chromatography
system equipped with FID as a detector (GC-7890B-Agilent) with HP-5 column, consisting of
5% diphenyl and 95% dimethyl polysiloxane capillary stationary phase and nitrogen as the
carrier gas. The appropriate diluted reaction mixture with tetradecane as an internal standard
and analyzed on GC and a gas chromatography-mass spectrometry (equipped with FID as a
detector (GC-MS Shimadzu, QP-2010, Japan) with HP-5 column which consists of 5%
diphenyl and 95% dimethyl polysiloxane capillary phase with helium as the carrier gas. The
ramp rate of initially 50 °C hold for 3 mins, 20 °C ramp to 320 °C with 20 mins hold).
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S2. Catalysis synthesis and catalytic activity
S2.1 Synthesis of Co-Al-SBA-15

The Co-Al-SBA-15 was synthesized by simple impregnation methods. In a 50 mL
polypropylene bottle, 0.2 g of AI-SBA-15 and 0.098 g Co(NOs3),.6H,0 dissolved into 10 mL
deionized water and constantly stirred for 24 h at 400 rpm. After 24 h, the water is evaporated
through rota evaporation and dried at 80 °C overnight. Finally, the catalyst was calcined at 550
°C at 5 h (2 °C/min) and denoted 2Cu-Al-SBA-15, 5 Cu-Al-SBA-15, and 10 Cu-Al-SBA-15,
respectively.

S2.2 Oxidation of styrene to benzaldehyde

In a 15 mL glass tube, 2.40 mmol of styrene, 0.025 g of Cu-Al-SBA-15, 1 mL GVL
added and heated at different temperatures while stirring at 400 rpm for about 12 to 24 h. After
the reaction, the reaction mixture is centrifuged to separate the catalyst. Further, the liquid

product was analyzed by GC and GC-MS.
S2.3 Esterification of benzoic acid with different alcohols

In a 30 mL glass tube, 2.40 mmol of styrene, 0.025 g of Cu-Al-SBA-15, 1 mL solvent
added and heated at different temperatures while stirring at 400 rpm for about 12 to 24 h. After
the reaction, the reaction mixture is centrifuged to separate the catalyst. Further, the liquid

product was analyzed by GC and GC-MS.
Conversion and selectivity calculated by GC
Conversion (%) = [(Initial mol%)-(Final mol%)/(Initial mol%)

Selectivity (%) = [(moles of product formed)/(moles of substrate consumed)]*100
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S3. Aerobic oxidation of styrene to benzaldehyde using mesoporous silica materials

Table S1 Acrobic oxidation of styrene to benzaldehyde using mesoporous silica materials

Sr.
No.

Catalyst Oxidant Reaction conditions Conv | Sel./yield of | Ref.
Additives (%) | benzaldehyde(
)

1

Cu-Mn/SBA- TBHP Styrene (10 mmol), TBHP (40 | 97.3 20 1
15 mmol), Cu-Mn/SBA-15 (20
mg), acetonitrile (10 mL), 7 h at
80 °C.

HCS-50 H,0, Styrene (1 mmol), H,0, (1.0 g), | 100 | 42.24% 2
HCS-50 (50 mg), 24 h at RT.

Fe;0,@Si0,@ | H,0, Styrene (10 mmol), H,O, (10 | 52.8 84.9% 3
mSiO,-Fe mmol), Fe;0,@Si0,@mSiO,-
Fe (100 mg), acetonitrile (10
mL), 10 h at 60 °C.

IMM-TMICI- H,0, Styrene (1 mol), H,O, (4 mol), | 36.8 93.6 4
Ni(IT) F IMM-TMICI-Ni(II) (500
mg), acetonitrile (8 g), 6 h at 70
°C.

V-SBA-16 TBHP Styrene (2.6 mmol), TBHP (2.6 | 83.9 | 55.5 5
mmol), V-SBA-16 (50 mg),
acetonitrile (10 mL), 24 h at 80
°C.

PMol11Co/SBA | O,/IBA Styrene (1 mmol), Air (10 | 89 15 6
ml/min), PMol1Co/SBA (10
mg), IBA (2 mmol), 1 h at 40
°C.

Ti-Fe-SBA-15 H,0, Styrene (15 mmol), H,O, (75 | 37 86 7
mmol), Ti-Fe-SBA-15 (100
mg), acetonitrile (16 mL), 12 h
at 70 °C.

10Cu-Al-SBA- | O, Styrene (2.40 mmol), 10Cu- | 100 6 This
15 Al-SBA-15 (25 mg), 1 mL work
GVL and 1 atm O, at 120 °C
for 24 h

HCS-50: Trivalent ceria-silica composite, IMM-TMICI-Ni(II): Ni**-containing ionic liquid (IL) 1-methyl-3-
[(triethoxysilyl)propyl] imidazolium chloride (TMICI) immobilized on silica, IBA: isobutyraldehyde
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S3.1 One-pot two step oxidative esterification of olefins to esters using
homogeneous/heterogeneous catalyst
Table S2 One-pot two step oxidative esterification of olefins to esters using homogeneous/heterogeneous catalyst
Sr. Catalyst Oxidant Reaction conditions Conv | Sel./yield(%) Ref.
No. Additives (%)
12 1,2- O,, N,N'- | Styrene (0.6 mmol), solvent (4 | - 85 1
dibutoxyethane | dicyclohexylcarbodiimid | equiv), heat, O, balloon, 12 h.
e (Step-1) and MeOH (0.6
mmol), N,N'-
dicyclohexylcarbodiimide (0.9
mmol) and 4-
dimethylaminopyridine (0.3
mmol), 8 h at RT. (Step-2)
2b Tubular carbon | O, and HCI Styrene: (0.5 mmol), TCN (10 | - 77 2
nitride mg), and HCI (0.3 mL, 37 wt%
aqueous) in MeOH (2 mL)
were irradiated with a 250 W
Xe lamp under oxygen at RT
for 10 h
3¢ Fe-NC-900 TBHP Styrene (0.25 mmol), Fe-NC- | - 84 3
900 (10 mol%), K,CO; (20
mol%), TBHP (2.2 equiv.),
MeOH (4 mL), 1.0 MPa O,, 48
h, 150 °C.
4¢ 10Cu-Al-SBA- | O, Styrene (2.40 mmol), 10Cu- | 100 66 This
15 Al-SBA-15 (0.25 g), 1 mL work

GVL and 1 atm O, at 120 °C
for 24 h, 600 rpm (Step-1).
Further, 1 mL of MeOH
added without addition of O,
for 24 h at 65 °C, 600 rpm.

2Homogeneous catalyst system, " photocatalytic conversion, ‘thermochemical catalytic conversion
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Fig. S1 Low angle PXRD spectra of AI-SBA-15
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Fig. S2 CO,-TPD spectrum of 10Cu-Al-SBA-15
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Fig. S3 High-resolution XPS spectra O 1s of the 10Cu-Al-SBA-15
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Fig. S4 (a) Survey spectra of the spent 10Cu-Al-SBA-15 catalyst. High-resolution XPS
spectra (b) Cu 2p peak, (c) Al 2p peak, (d) Si 2p of the 10Cu-Al-SBA-15.
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S4. GC-MS spectrum
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Fig. S5 GC-MS spectrum of isophthalaldehyde
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Fig. S6 GC-MS spectrum of 4-chlorobenzaldehyde
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Fig. S7 GC-MS spectrum of 4-methylbenzaldehyde
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Fig. S8 GC-MS spectrum of isopropyl benzoate
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Fig. S9 GC-MS spectrum of methyl benzoate
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Fig. S10 GC-MS spectrum of propyl benzoate
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Fig. S11 GC-MS spectrum of butyl benzoate
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