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1. Additional experimental procedures

1.1. Materials
1-Methyl Pyrazole (≥98.0%), acetonitrile (≥99.0%), ethyl acetate (≥99.0%), propylene oxide 

(≥99.0%), other epoxides, and different side chain lengths analytical reagents were supplied by 

Aladdin Chemical Reagent Co. All purity of chemicals was the Analytical reagent. CO2 was 

purchased from Beijing Analytical Instrument Factory with a purity of 99.99%, and all reagents 

were employed in this work without further purification.

1.2. Synthesis of DPzILs with different alkyl chain lengths
In order to synthesize dicationic pyrazolium ionic liquids, a cost-effective approach involves a 

one-step process. Different side chain lengths, including 1,2-Dibromoethane, 1,2-

Dibromobutane, 1,2-Dibromohexane, 1,2-Dichloroethane, 1,2-Dichlorobutane, 1,2-

Dichlorohexane, 1,2-Diiodoethane, 1,2-Diiodoebutane and 1,2-Diiodohexane (0.05 mol each), 

were mixed with 1-methyl pyrazole (0.05 mol) in 18 mL acetonitrile and stirred the above mixture 

for 1 hour at room temperature. Then the mixture is agitated at 80 °C for 48 hours under nitrogen 

protection. When the reaction was completed, the remaining solvent was evaporated using a 

rotary evaporator (EYELA, N-1300), and the resulting residue was subsequently washed with 

ethyl acetate (10 mL x 3) to remove impurities using a Benchtop High-Speed centrifuge (TG16-

WS). 

Finally, the obtained DPzIL was dried for 24 hours at 60 °C in a vacuum oven to produce pure 

DPzIL. These DPzILs with the alkyl chain lengths were named 2,2'-(hexane-1,6-dial)-bis(1-

methylpyrazolium) diiodide ([DMPz-6]I2), 2,2'-(butane-1,4-dial)-bis(1-methylpyrazolium) 

diiodide ([DMPz-4]I2), 2,2'-(ethane-1,2-dial)-bis(1-methylpyrazolium) diiodide ([DMPz-2]I2), 2,2'-

(hexane-1,6-dial)-bis(1-methylpyrazolium) dibromide ([DMPz-6]Br2), 2,2'-(butane-1,4-dial)-bis(1-

methylpyrazolium) dibromide ([DMPz-4]Br2), 2,2'-(ethane-1,2-dial)-bis(1-methylpyrazolium) 

dibromide ([DMPz-2]Br2), 2,2'-(hexane-1,6-dial)-bis(1-methylpyrazolium) dichloride ([DMPz-

6]Cl2), and 2,2'-(butane-1,4-dial)-bis(1-methylpyrazolium) dichloride ([DMPz-4]Cl2).
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1.3. Cycloaddition reaction of CO2 with epoxides into cyclic carbonates
The cycloaddition reaction was performed in a 25 mL high-pressure microreactor (reaction 

kettle). Epoxide (0.02 mol) and a certain amount of catalyst (30–500 mg) is added to the reaction 

kettle. Increase the reactor pressure to half the intended CO2 pressure (1–20 bar) just at room 

temperature and start heating the reactor. Then, when the reactor temperature reaches the 

desired temperature (40–120 °C) for 1–15 h, the pressure is increased to the final expected CO2, 

and the valve is kept open to ensure that the reactor pressure does not change during the whole 

reaction. After the reaction was finished, the reactor was cooled to room temperature, and the 

extra CO2 was gradually released. Products are separated from the mixed solution by a benchtop 

high-Speed Centrifuge within 4 minutes at 8000 rotation speeds (TG16-WS) and analyzed by gas 

chromatography (GC). The catalyst is then dried in a vacuum and used for the next recycling.

1.4. Characterization techniques of DPzIL catalysts
 The catalysts were subjected to analysis of 1H and 13C NMR using a Bruker AVANCE III 600 MHz 

spectrometer, with deuterated reagents in the form of DMSO-d6 and tetramethylsilane (TMS) as 

an internal standard. The molecular weights of the catalysts were ascertained through the 

utilization of Electrospray ionization-mass spectrometry of impact HD (Bruker, Germany) in the 

presence of acetonitrile as the solvent. Both positive and negative ion modes were utilized for 

conducting the ESI-MS analysis. The chemical composition of catalysts was analyzed using the 

Fourier transform infrared spectrum of the Thermo Nicolet 380 spectrometer. KBr was employed 

as a reference to verify the presence of corresponding groups. A resolution of 4 cm-1 and 64 

transmittance scans was used to cover the spectral range of 4000 to 400 cm-1. The Vario EL Cube 

elemental analyzer (CHNS Mode) was utilized to examine the elemental compositions (C/H/N). 

The thermal decomposition temperature of the catalysts was detected through 

thermogravimetric analysis using DTG-60H under a nitrogen atmosphere. The temperature 

programming was set at 10 °C min-1 to achieve 600 °C. The study employed gas chromatography 

(GC) to conduct analyses, utilizing a GC-7890A instrument manufactured by Agilent Technologies, 

equipped with a flame ionization detector. The GC-mass spectrometry (GCMS-QP2020) 

technique is employed to qualitatively detect reaction product components and identify 

associated product chemical structures.
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1.5. Computational details 
Density functional theory (DFT) calculations performed by the Gaussian 09 program package  1 

were employed to investigate the interactions of PO and catalysts. The geometries for all 

structures were optimized using the B3LYP functional method combined with 6-311++G(d,p) 

basis set (B3LYP/6-311++G(d,p)). Vibration frequency calculations were performed to confirm the 

stationary points, where no imaginary frequencies were obtained. Then, Noncovalent 

interactions (NCI) ) were further analyzed for noncovalent interactions 2, 3 using Multiwfn 4 and 

visual molecular dynamics (VMD).5 All the reported bond lengths and angles are conveyed in 

angstroms (Å) and degrees (◦), respectively.

2. NMR spectra of DPzILs catalysts

Figure S1. 1H NMR spectrum of [DMPz-6]I2
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Figure S2. 13C NMR spectrum of [DMPz-6]I2
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Figure S3. 1H NMR spectrum of [DMPz-4]I2
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Figure S4. 13C NMR spectrum of [DMPz-4]I2
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Figure S5. 13H NMR spectrum of [DMPz-2]I2
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Figure S6. 13C NMR spectrum of [DMPz-2]I2
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Figure S7. 1H NMR spectrum of [DMPz-6]Br2
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Figure S8. 13C NMR spectrum of [DMPz-6]Br2
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Figure S9. 1H NMR spectrum of [DMPz-4]Br2
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Figure S10. 13C NMR spectrum of [DMPz-4]Br2
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Figure S11. 1H NMR spectrum of [DMPz-2]Br2
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Figure S12. 13C NMR spectrum of [DMPz-2]Br2
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Figure S13. 1H NMR spectrum of [DMPz-6]Cl2
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Figure S14. 13C NMR spectrum of [DMPz-4]Cl2
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Figure S15. 1H NMR spectrum of [DMPz-4]Cl2
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Figure S16. 13C NMR spectrum of [DMPz-4]Cl2
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3. ESI-MS spectra of DPzILs catalysts
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Figure S17. [DMPz-6]I2-Positive mode, [C7H12N2]2+:
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Figure S18. [DMPz-6]I2-Negative mode, [I-]:
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Figure S19. [DMPz-6]Br2-Positive mode, [C7H12N2]2+:
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Figure S20. [DMPz-6]Br2-Negative mode, [Br-].
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Figure S21. [DMPz-4]I2-Positive mode, [C12H20N4]+.
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Figure S22. [DMPz-4]I2-Negative mode, [I-].
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Figure S23. [DMPz-4]Br2-Positive mode, [C12H20N4]+:
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Figure S24. [DMPz-4]Br2-Negative mode, [Br-].
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Figure S25.  [DMPz-2]Br2-Positive mode, [C10H16N4]+.
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Figure S26. [DMPz-2]Br2-Negative mode, [Br-].
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Figure S27. [DMPz-6]Cl2-Positive mode, [C7H12N2]2+.



S25

4. TGA curves of DPzILs catalysts

Figure S28. TGA curves for five selected DPzILs
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5. FTIR spectrum of fresh and reused [DMPz-6]I2

Figure S29. FT-IR spectra of fresh and 5 times reused [DMPz-6]I2
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6. Optimized geometries of DPzILs and PO

Figure S30. Optimized geometries for DPzILs and PO computed at the B3LYP/6-311++G (d,p) set 

level: (a) [DMPz-2]Br2-PO (b) [DMPz-4]Br2-PO, (c) [DMPz-6]Br2-PO.
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Table S1. C/N/H Elemental analysis of synthesized dicationic pyrazolium ILs

Catalyst C [wt.%] N [wt.%] C/N molar

ratio

C/N theoretical

molar ratio

[DMPz-6]I2 68.43 23.43 3.41 3.5

[DMPz-6]Br2 66.86 21.61 3.60 3.5

[DMPz-4]I2 30.17 11.27 3.12 3.0

[DMPz-4]Br2 35.35 12.64 3.02 3.0

[DMPz-2]I2 22.02 10.33 2.49 2.5

[DMPz-2]Br2 26.88 10.46 2.48 2.5
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