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Table S1. Reaction Conditions for Pd-mediated Carbonylation of Thiophene 1j

° O (20 atmy - A(OAC) (10 mol%), addtive S
' .
@ (20 atm) ————— @m0, 100°C.20n~ \ / ‘OH

1j (3 mmol) 2j
Entry Solvent Additive Yield 2i (%)?

1 Glacial AcOH - N. D.
2 Glacial AcOH NaOAc (1 equiv.) N. D.
3 Glacial AcOH H.O (100 L) N. D.
4 Glacial AcOH PivOH (30 mol%) N. D.
5 Glacial AcOH K2COs (30 mol%) N. D.
6 Glacial AcOH (CO; bubbling) - 8

7 Glacial AcOH (N2 + O2 (79 : 21) bubbling) - N. D.

2Yields were determined by *H NMR spectroscopy based on 1j.

Table S2. Optimization of Reaction Conditions for Pd-catalyzed Carbonylation of 1h

Pd(OAc), (x mol%) o
C'\Q + CO (30 atm) + CO (5 atm) Acopigrfli TSZ'V; — cl \S/ o
1h (3 mmol) 2h
Entry Pd cat. (mol%) Time (h) Yield 2e (%)?
1 1 20 45
2 1 72 66
3 5 20 87

Yields were determined by *H NMR spectroscopy.

Table S3. Optimization of Reaction Conditions for Pd-Catalyzed Carbonylation of Furfuryl Acetate 3a*

Pd(OAc), (y mol%) o

-BQ (z equiv.
Aco/\@ + CO(xatm) + CO, (5 atm) Aco: (3_o(mL; 10()) T ACQ/\WOH
3a (3 mmol) 4a
Entry CO (atm) CO; (atm) Pd(OAC), (mol%) p-BQ (equiv.) Yield 4a (%)
1 10 1 10 3.0 41
2 20 1 10 3.0 60
3 50 1 10 3.0 90
4 30 5 1 15 55
5 30 5 5 15 76
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6 30 5 10 15 78
7 50 5 5 15 40
8 30 5 5 3.0 92
9 30 - 5 3.0 70

2Yields were determined by *H NMR spectroscopy.

Table S4. Optimization of Reaction Conditions for Pd-catalyzed Carbonylation of 2-Ethylfuran 3b®

Pd(OAc), (x mol%) (0]
o p-BQ (3 equiv.) 0
/\@ + CO (30 atm) + CO3 (5 atm) AcOH (3 mL), 100 °C, time \ / OH
3b (3 mmol) b
Entry Pd cat. (mol%) Time (h) Yield 4 (%)
. c 20 29
) 15 20 54
3 15 48 (78)
4b 15 48 3

2Yjelds were determined by *H NMR spectroscopy (isolated yield). ®The reaction was conducted under CO (30
atm).

General Remarks

Unless otherwise stated, all starting materials and catalysts were purchased from commercial sources
and used without further purification. All solvents were distilled and degassed with nitrogen before use.
Thiophene derivatives (1e,5! 1f52) and furan derivatives (3f, 3g>*) were prepared according to the
previously reported procedures. *H NMR spectra were recorded on a JEOL JNM-ECS400 (400 MHz)
FT NMR system, a JEOL JNM-ECX400 (400 MHz) FT NMR system, or a Bruker BioSpin Ascend
400 spectrometer (400 MHz) with Me,Si as an internal standard. **C{*H} NMR spectra were recorded
on a JEOL JNM-ECX400 (100 MHz) FT NMR, a JEOL JNM-ECS400 (100 MHz) FT NMR system, or
a Bruker BioSpin Ascend 400 spectrometer (100 MHz). The *H NMR yields of the crude mixture were
determined using 1,3,5-trioxane as the internal standard. IR spectra were recorded on a Jasco
FT/IR-410, and reported in wavenumbers (cm™).

Experimental Procedure for Pd-Catalyzed Carbonylation of Thiophenes (Table 2).

Thiophene 1 (3 mmol), Pd(OAc)2 (1-5 mol%), p-benzoquinone (1.5 equiv. 486.4 mg), and AcOH (3.0
mL, bubbled with CO> for 30 min) were sequentially added to a 50 mL stainless steel autoclave with a
magnetic stirring bar under a N2 atmosphere. The vessel was purged five times with CO, and then
charged with CO> (5 atm) and CO (30 atm), respectively. The reaction was conducted with magnetic

stirring at 100 °C for 20-72 h. The resulting mixture was filtered through silica-gel with CH2Cl>, and
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concentrated under reduced pressure. The residue was basified by sat. NaHCOz ag. (pH = 9), and the
solvent was removed under reduced pressure. Then, the residue was washed with Et,O (30 mL), and
acidified with 10% HCI ag. (pH = 1). The solution was concentrated under reduced pressure. The
residue was dissolved in acetone (10 mL), and filtered. Finally, the filtrate was concentrated to give the
corresponding carboxylic acids 2.

5-Ethylthiophene-2-carboxylic acid (2a) (CAS no. 23229-72-3)%°

O
S

\ /) OH

Brown solid, 403.0 mg, 86%; *H NMR (400 MHz, CDCls): & 11.08 (br, 1H), 7.73 (d, J = 3.7 Hz, 1H),
6.84 (d, J = 3.2 Hz, 1H), 2.89 (q, J = 7.5 Hz, 2H), 1.34 (t, J = 7.6 Hz, 3H); *C{*H} NMR (100 MHz,
CDCIs): 6 168.1, 157.7,135.5, 129.8, 125.1, 24.1, 15.7.

5-Methylthiophene-2-carboxylic acid (2b) (CAS no. 1918-79-2)%°

O
S

\ / OH

Brown solid, 358.5 mg, 84%; *H NMR (400 MHz, CDCls): & 10.98 (br, 1H), 7.71 (d, J = 3.6 Hz, 1H),
6.80 (d, J = 3.2 Hz, 1H), 2.54 (s, 3H); 3C{*H} NMR (100 MHz, CDCl3) § 168.0, 150.1, 135.7, 130.2,
126.9, 16.0.

5-Pentylthiophene-2-carboxylic acid (2c) (CAS no. 63068-75-7)5"

o)
S

\ / OH

Brown solid, 475.8 mg, 80%; *H NMR (400 MHz, CDCls): & 9.58 (br, 1H), 7.72 (d, J = 3.7 Hz, 1H),
6.82 (d, J = 3.7 Hz, 1H), 2.85 (t, J = 7.6 Hz, 2H), 1.71 (m, 2H), 1.35 (m, 4H), 0.90 (m, 3H); 3C{ H}
NMR (100 MHz, CDCls): § 167.7, 156.1, 135.3, 129.8, 125.6, 31.2, 31.1, 30.6, 22.3, 13.9.

"Pen

5-(2-Ethylhexyl)thiophene-2-carboxylic acid (2d) (CAS no. 1810058-94-6)%8

S
WCH

Brown solid, 653.5 mg, 91%; *H NMR (400 MHz, CDCls): § 10.07 (br, 1H), 7.73 (d, J = 3.6 Hz, 1H),
6.80 (d, J = 3.6 Hz, 1H), 2.79 (d, J = 6.8 Hz, 2H), 1.64-1.61 (m, 1H), 1.38-1.28 (m, 8H), 0.91-0.88 (m,
6H); *C{*H} NMR (100 MHz, CDCls): § 167.8, 155.0, 135.4, 130.0, 126.6, 41.6, 34.6, 32.4, 28.9,
25.6, 23.0, 14.2, 10.9.
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5-Benzylthiophene-2-carboxylic acid (2e) (CAS no. 13132-16-6)°
0

S
Ph/\ﬁ_])(w

Gray solid, 655.8 mg, 100%; *H NMR (400 MHz, CDCls): & 10.30 (br, 1H), 7.70 (m, 1H), 7.30-7.29
(m, 2H), 7.23 (m, 3H), 6.80 (m, 1H), 4.13 (s, 2H):; 3C{*H} NMR (100 MHz, CDCls): 5 167.9, 154.3,
139.0, 135.5, 130.9, 128.8, 128.7, 127.0, 126.5, 36.7.

5-((Benzyloxy)methyl)thiophene-2-carboxylic acid (2f) (CAS no. 1481274-88-7)

O
S

BnO \ / OH

Dark brown solid, 618.0 mg, 83%; *H NMR (400 MHz, CDCls): § 10.36 (br, 1H), 7.77 (d, J = 3.6 Hz,
1H), 7.37-7.36 (m, 4H), 7.33-7.29 (m, 1H), 7.00 (d, J = 3.6 Hz, 1H), 4.71 (s, 2H), 4.59 (s, 2H); *C{*H}
NMR (100 MHz, CDClz3) 6 167.8, 150.9, 137.4, 135.1, 132.4, 128.7, 128.1, 128.0, 126.6, 72.4, 66.7.

5-Phenylthiophene-2-carboxylic acid (2g) (CAS no. 19163-24-7)51°
0

\ / OH

Light brown solid, 540.3 mg, 88%; 'H NMR (400 MHz, CDCls): & 7.87 (d, J = 4.1 Hz, 1H), 7.66 (d, J
= 7.2 Hz, 2H), 7.45-7.38 (m, 3H), 7.33 (d, J = 3.6 Hz, 1H); 3C{*H} NMR (100 MHz, CDCls): 5 167.6,
153.1, 136.1, 133.3, 131.2, 129.25, 129.16, 126.4, 124.0.

5-Chlorothiophene-2-carboxylic acid (2h) (CAS no. 24065-33-6)5!

0]

cl—S
\ / “OH

Brown solid, 336.7 mg, 69%; 'H NMR (400 MHz, CDCls):  9.52 (br, 1H), 7.69 (d, J = 4.1 Hz, 1H),
6.97 (d, J = 4.1 Hz, 1H); *C{*H} NMR (100 MHz, CDCls): § 167.9, 140.4, 135.9, 132.0, 128.8.

5-Bromothiophene-2-carboxylic acid (2i) (CAS no. 7311-63-9)5?

0]
S

\ / OH

Br

Dark gray solid, 433.5 mg, 70%; *H NMR (400 MHz, CDCls): & 9.68 (br, 1H), 7.63 (d, J = 4.0 Hz, 1H),
7.10 (d, J = 4.0 Hz); BC{*H} NMR (100 MHz, CDCls): 5 166.5, 136.3, 133.9, 131.3, 122.3.
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2-Thiophenylcarboxylic acid (2j) (CAS no. 527-72-0)°13

o)
S

\ /) OH

Brown solid, 211.6 mg, 55%; *H NMR (400 MHz, CDCls): § 7.91 (dd, J = 3.9, 1.1 Hz, 1H), 7.66 (dd, J
=5.0, 1.4 Hz, 1H), 7.15 (dd, J = 5.0, 4.1 Hz, 1H); B®C{*H} NMR (400 MHz, CDCls): § 167.7, 135.1,
134.1, 132.9, 128.2.

Thieno[3,2-b]thiophene-2-carboxylic acid (2k) (CAS no. 1723-27-9)514

O
S

7\ / OH

S
Light brown solid, 311.3 mg, 56%; *H NMR (400 MHz, DMSO-de): & 8.12 (s, 1H), 7.93 (d, J = 5.3 Hz,
1H), 7.52 (d, J = 5.3 Hz, 1H); *C{*H} NMR (100 MHz, DMSO-ds): & 163.9, 143.7, 139.1, 136.1,
133.5, 126.6, 120.8.

3-Methylthiophene-2-carboxylic acid (A) and 4-methylthiophene-2-carboxylic acid (B) (2I)

O 0
S S
\ / OH + \ / TOH

(A) (B)
Brown solid, 322.0 mg, 75%; [compound A] (CAS no. 23806-24-8)51%: 'H NMR (400 MHz, CDCls): §
10.1 (br, 1H), 7.48 (d, J = 5.0 Hz, 1H), 6.95 (d, J = 5.0 Hz, 1H), 2.58 (s, 3H); [compound B] (CAS no.
14282-78-1)515: 1H NMR (400 MHz, CDCls): § 10.1 (br, 1H), 7.69 (d, J = 1.3 Hz, 1H), 7.24-7.23 (m,
1H), 2.30 (s, 3H).

3-Hexylthiophene-2-carboxylic acid (A) and 4-hexylthiophene-2-carboxylic acid (B) (2m)

@) 0]
S S

\ / OH 4 \ /, OH

"Hex "Hex

(A) (B)
Reddish brown solid, 551.9 mg, 87%; [compound A] (CAS no. 214409-28-6)%%: IH NMR (400 MHz,
CDCls): & 11.6 (br, 1H), 7.47 (d, J = 5.0 Hz, 1H), 6.98 (d, J = 5.0 Hz, 1H), 3.02 (t, J = 7.8 Hz, 2H),
1.67-1.59 (m, 2H), 1.39-1.26 (m, 4H), 0.91-0.87 (m, 3H); [compound B] (CAS no. 1261539-24-5)%:
'H NMR (400 MHz, CDCls): § 11.6 (br, 1H), 7.72 (d, J = 1.4 Hz, 1H), 7.23 (d, J = 1.4 Hz. 1H), 2.61 (t,
J=7.7 Hz, 2H), 1.67-1.59 (m, 2H), 1.39-1.26 (m, 4H), 0.91-0.87 (m, 3H).
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3-Chlorothiophene-2-carboxylic acid (A) and 4-chlorothiophene-2-carboxylic acid (B) (2n)

Cl Cl
(A) (B)

Light Brown solid, 343.9 mg, 71%; [compound A] (CAS no. 59337-89-2)5!": 'H NMR (400 MHz,
CDCls): § 7.58 (d, J = 5.0 Hz, 1H), 7.07 (d, J = 5.4 Hz, 1H); [compound B] (CAS no. 59614-95-8)8:
IH NMR (400 MHz, CDCl3): § 7.73-7.73 (m, 1H), 7.43-7.43 (m, 1H)

3-Bromothiophene-2-carboxylic acid (A) and 4-bromothiophene-2-carboxylic acid (B) (20)

Br Br
(A) (B)

Light gray solid, 482.3 mg, 78%; [compound A] (CAS no. 7311-64-0)5'°: *H NMR (400 MHz, CDCls):
§7.56 (d, J = 5.2 Hz, 1H), 7.15 (d, J = 5.2 Hz, 1H); [compound B] (CAS no. 16694-18-1)5% 'H NMR
(400 MHz, CDCl3): 6 7.79 (d, J = 1.5 Hz, 1H), 7.54 (d, J = 1.5 Hz, 1H).

Experimental Procedure for Gram-scale Synthesis of 2a via Pd-catalyzed Direct Carbonylation
(Table 2).

2-Ethylthiophene 1a (10 mmol, 1.12 g), Pd(OAc)2 (1 mol%, 22.5 mg), p-benzoquinone (1.5 equiv.
1.62 g), and AcOH (10 mL, bubbled with CO> for 30 min) were sequentially added to a 50 mL stainless
steel autoclave with a magnetic stirring bar under a N2 atmosphere. The vessel was purged three times
with CO2 and then charged with CO> (5 atm) and CO (30 atm), respectively. The reaction was
conducted with magnetic stirring at 100 °C for 20 h. After the reaction was completed, the resulting
mixture was filtered through silica-gel with CHCl, and concentrated under reduced pressure. The
residue was basified by sat. NaHCOs ag. (pH = 9), and the solution was removed in vacuo. The residue
was washed with Et:O (50 mL), then acidified with 10% HCI ag. (pH = 1). The solution was
concentrated under reduced pressure. The residue was dissolved in acetone (20 mL), and filtered.
Finally, the filtrate was concentrated to give pure 2a in 83% isolated yield (brown solid, 1.3 g).

Experimental Procedure for Pd-Catalyzed Carbonylation of Furans (Table 3).

Furan 3 (3 mmol), Pd(OAc). (5-15 mol%), p-benzoquinone (3 equiv. 972.8 mg), and AcOH (3.0 mL,
bubbled with CO> for 30 min) were sequentially added to a 50 mL stainless steel autoclave with a
magnetic stirring bar under a N2 atmosphere. The vessel was purged three times with CO> and then
charged with CO> (5 atm) and CO (30 atm), respectively. The reaction was conducted with magnetic
stirring at 100 °C for 20-48 h. After the reaction was completed, the resulting mixture was filtered
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through silica-gel with CH>Cl> and concentrated under reduced pressure. The residue was basified by
sat. NaHCOs ag. (pH = 9), and the solution was removed in vacuo. The residue was washed with Et2O
(30 mL), then acidified with 10% HCI ag. (pH = 1). The solution was concentrated under reduced
pressure. The residue was disollved in acetone (10 mL), and filtered. Finally, the filtrate was
concentrated to give the corresponding carboxylic acids 4.

5-Ethylfuran-2-carboxylic acid (4b) (CAS no. 56311-37-6)%2!
o)

0
/\&]AOH

Dark brown solid, 326.3 mg, 78%; *H NMR (400 MHz, CDCls): § 10.1 (br, 1H), 7.26 (d, J =3.6 Hz,
1H), 6.18 (d, J = 3.4 Hz, 1H), 2.75 (g, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H); *C{*H} NMR (100
MHz, CDCls) : 6 164.1, 163.7, 142.0, 121.6, 107.4, 21.8, 11.8.

5-Propylfuran-2-carboxylic acid (4c) (CAS no. 14497-25-7)5%2

o]
npr O
\ / OH
Brown solid, 384.7 mg, 83%; 'H NMR (400 MHz, CDCls): & 8.85 (br, 1H), 7.25 (d, J = 3.4 Hz, 1H),
6.18 (d, J = 3.4 Hz, 1H), 2.69 (t, J = 7.5 Hz, 2H), 1.78-1.68 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H); 3C{'H}
NMR (100 MHz, CDCls) : 6 163.6, 162.8, 142.1, 121.6, 108.2, 30.3, 21.1, 13.7.

5-Butylfuran-2-carboxylic acid (4d) (CAS no. 67238-23-7)5%

o]
ngy__O
\ / OH
Brown solid, 400.1 mg, 79%; 'H NMR (400 MHz, CDCls): & 8.91 (br, 1H), 7.25 (d, J = 3.4 Hz, 1H),
6.17 (d, J = 3.4 Hz, 1H), 2.71 (t, J = 7.7 Hz, 2H), 1.68 (m, 2H), 1.38 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H);
13C{*H} NMR (100 MHz, CDCls) : § 163.7, 163.0, 142.0, 121.6, 108.1, 29.7, 28.1, 22.2, 13.7.

5-Phenylfuran-2-carboxylic acid (4f) (CAS no. 52938-97-3)524

O

Ph—_©
\ / OH

Brown solid, 203.4 mg, 36%; 'H NMR (400 MHz, CDCls): & 9.98 (br, 1H), 7.80 (d, J = 7.5 Hz, 2H),
7.45-7.35 (m, 4H), 6.78 (d, J = 2.7 Hz, 1H); 3C{*H} NMR (100 MHz, CDCls) : & 163.7, 158.8, 142.8,
129.31, 129.25, 128.9, 125.1, 122.3, 107.3.
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5-((Benzyloxy)methyl)furan-2-carboxylic acid (4g) (CAS no. 42890-01-7)52°

)
0}

BnO \ / OH

Light brown solid, 574.4 mg, 82%; 'H NMR (400 MHz, DMSO-ds): § 7.38-7.28 (m, 5H), 7.18 (d, J =
3.3 Hz, 1H), 6.63 (d, J = 3.3 Hz, 1H), 4.59 (m, 4H); *C{*H} NMR (100 MHz, CDCls) : & 163.4, 157.6,
143.9, 137.3, 128.9, 128.7, 128.3, 121.7, 112.4, 73.9, 65.7.

5-Bromofuran-2-carboxylic acid (4h) (CAS no. 585-70-6)5%
0

BI‘\CJA
\ / OH

Dark brown solid, 497.2 mg, 87%; *H NMR (400 MHz, CDCls): § 7.26 (s, overlapped with CDCls, 1H),
6.51 (s, 1H); *C{*H} NMR (100 MHz, DMSO-de): 5 158.7, 147.2, 127.2, 120.6, 114.9.

Furan-2-carboxylic acid (4i) (CAS no. 88-14-2)5%

O
0]

\ / OH

Light brown solid, 200.3 mg, 60%; *H NMR (400 MHz, CDCls): § 8.79 (br, 1H), 7.65 (m, 1H), 7.34 (d,
J = 3.5 Hz, 1H), 6.57-6.56 (m, 1H); *C{*H} NMR (100 MHz, CDCls): § 163.5, 147.5, 143.8, 120.2,
112.3.

3-Bromofuran-2-carboxylic acid (4j) (CAS no. 14903-90-3)528

@)
)

\ / OH
Br

Brown solid, 546.1 mg, 95%; *H NMR (400 MHz, CDCls): § 10.2 (br, 1H), 7.59 (m, 1H), 6.67 (m, 1H);
BC{'H} NMR (100 MHz, CDCls): § 162.8, 146.9, 140.4, 117.5, 111.1.

Experimental Procedure for the Structual Charactrization of Palladium Carbonyl Complexes by IR
Measurment
[Fig. 1, eq. 1]

Pd(OACc)2 (0.3 mmol) and AcOH (3.0 mL, bubbled with Ar for 30 min) were sequentially added to a
50 mL stainless steel autoclave with a magnetic stirring bar under a N2 atmosphere. The vessel was
purged five times with CO and then charged with CO (1 atm). The reaction was conducted with
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magnetic stirring at 50 °C for 15 min. The resulting mixture was filtered by suction and the residue was
washed with dry Et2O (15 mL), and the suction was continued for 10 min. The resulting solid was then
dried between filter papers and the IR measurment of the resulting powder was conducted by KBr
method without any further purification.

[Fig. 1, eq. 2]

Pd(OACc)2 (0.3 mmol) and AcOH (3.0 mL, bubbled with Ar for 30 min) were sequentially added to a
50 mL stainless steel autoclave with a magnetic stirring bar under a N2 atmosphere. The vessel was
purged five times with CO and then charged with CO (30 atm). The reaction was conducted with
magnetic stirring at 50 °C for 15 min. After removing excess CO from the reaction vessel, the vessel
was purged five times with CO, and then charged with CO> (5 atm). The reaction was conducted with
magnetic stirring at 100 °C for 15 min. The resulting mixture was filtered by suction and the residue
was washed with dry Et.O (15 mL), and the suction was continued for 10 min. The resulting solid was
then dried between filter papers and the IR measurment of the resulting powder was conducted by KBr
method without any further purification.

[Fig 2, eq. 6]

Pd(OACc)2 (0.3 mmol) and AcOH (3.0 mL, bubbled with Ar for 30 min) were sequentially added to a
50 mL stainless steel autoclave with a magnetic stirring bar under a N> atmosphere. The vessel was
purged five times with CO and then charged with CO (10 atm). The reaction was conducted with
magnetic stirring at 100 °C for 15 min. The resulting mixture was filtered by suction and the residue
was washed with dry Et,O (15 mL), and the suction was continued for 10 min. The resulting solid was
then dried between filter papers and the IR measurment of the resulting powder was conducted by KBr
method without any further purification.

[Fig. 2, eq. 7]

Pd(OACc)2 (0.3 mmol) and AcOH (3.0 mL, bubbled with Ar for 30 min) were sequentially added to a
50 mL stainless steel autoclave with a magnetic stirring bar under a N> atmosphere. The vessel was
purged five times with COz and then charged with CO> (5 atm) and CO (10 atm), respectively. The
reaction was conducted with magnetic stirring at 100 °C for 15 min. The resulting mixture was filtered
by suction and the residue was washed with dry Et.O (15 mL), and the suction was continued for 10
min. The resulting solid was then dried between filter papers and the IR measurment of the resulting
powder was conducted by KBr method without any further purification.
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Figure S1 Copies of *H and BC{*H} NMR spectra of 2a
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Figure S2 Copies of 'H and *C{*H} NMR spectra of 2b
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Figure S3 Copies of 'H and *C{*H} NMR spectra of 2¢
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Figure S4 Copies of *H and **C{*H} NMR spectra of 2d
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Figure S5 Copies of *H and *C{*H} NMR spectra of 2e
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Figure S6 Copies of *H and **C{*H} NMR spectra of 2f
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Figure S7 Copies of *H and “*C{*H} NMR spectra of 2g
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Figure S8 Copies of *H and **C{*H} NMR spectra of 2h
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Figure S9 Copies of *H and *C{*H} NMR spectra of 2i

S19

"2-8r Thio Car isolated" 1 1 C:\Users'yuuch\Desktop ’E

I 0 il

H ] EE‘E Br S H]

\ / OH |
2i (400 MHz, CDCl5) 8
]
lg
-8
1 | af

. E B

- : e " 4 : l‘nm
"2-8r Thio Car isolated" 2 1 C:\Users'yuuch\Desktop E
-8

8
% [ & 0
| i Br— S
\ / OH
2i (100 MHz, CDCl5)

-8
-2
]

200 150 u‘m s‘n l: [ppm]



Figure S10 Copies of *H and **C{*H} NMR spectra of 2j
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Figure S11 Copies of *H and *C{*H} NMR spectra of 2k
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Figure S12 The copy of *H NMR spectrum of 2I
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Figure S13 The copy of *H NMR spectrum of 2m

s o " P .
RRERR.NHE REEGRARRaCHRRARREERIRRAAR ¢
o | o oy e VT
S N S
\ / OH \ / OH
"Hex "Hex

2m (400 MHz, CDCl5)

[ren

T
10

Jr_\_JLJL I
EE

1.1536

[

Lozozl
|-1,5660
=0.2603

L4 6011 —

15 10 5 0 [ppm]

S22



Figure S14 The copy of *H NMR spectrum of 2n
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Figure S16 Copies of *H and *C{*H} NMR spectra of 4b
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Figure S17 Copies of *H and **C{*H} NMR spectra of 4c
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Figure S18 Copies of *H and **C{*H} NMR spectra of 4d
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Figure S19 Copies of *H and *C{*H} NMR spectra of 4f
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Figure S20 Copies of *H and *C{*H} NMR spectra of 4g
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Figure S21 Copies of *H and *C{*H} NMR spectra of 4h
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Figure S22 Copies of *H and *C{*H} NMR spectra of 4i
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Figure S23 Copies of *H and *C{*H} NMR spectra of 4j
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Figure S24 The *H NMR spectrum of 4e (crude mixture in CDCls)
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