Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Local Structures and Robust Oxygen Reduction Performances of TiN-Supported Bimetallic Pt-Cu Electrocatalysts for Fuel Cell

Hirosuke Matsui, *a Asako Shoji, a Chaoqi Chen, a Xiao Zhao, b Tomoya Uruga, b,c and Mizuki Tada*a

^a Department of Chemistry, Graduate School of Science & Research Center for Materials Science & Integrated Research Consortium on Chemical Science & Institute for Advanced Study, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602 (Japan).

E-mail: matsui.hirosuke.x1@f.mail.nagoya-u.ac.jp

tada.mizuki.u6@f.mail.nagoya-u.ac.jp

^b Innovation Research Center for Fuel Cells, The University of Electro-

Communications, Chofu, Tokyo 182-8585 (Japan).

^c Japan Synchrotron Radiation Research Center, SPring-8, Koto, Sayo, Hyogo 679-5198 (Japan)

Fig. S1 N₂ adsorption isotherm at 77 K for the used TiN particles (NI-TIN-2, purity > 99.2%, EMJapan Co.). The symbols of \bullet and \blacktriangle indicate the adsorption and desorption profiles of N₂, respectively.

Used Pt /wt%	Loaded Pt /wt%	Used Cu /wt%	Loaded Cu /wt%	X
20.0	17.7	0.0	0.0	0.0
20.1	17.9	0.0	0.0	0.0
19.5	15.3	1.6	1.0	0.2
19.5	14.2	1.6	1.1	0.2
19.3	14.3	2.5	1.8	0.3
19.3	15.7	2.5	2.3	0.4
18.5	14.5	6.9	5.1	1.0
18.6	13.1	7.0	4.8	1.0
18.6	14.6	7.0	5.7	1.1
18.5	14.2	6.9	5.7	1.1
18.3	14.2	8.3	6.4	1.3
18.3	14.0	8.5	6.6	1.3
18.5	14.5	8.5	7.0	1.4
17.6	13.8	8.5	6.9	1.4
17.5	12.4	12.1	9.8	2.4
17.6	12.4	12.3	9.6	2.3

Table S1 Examples of Pt and Cu loadings on the prepared PtCu-*X*/TiN catalysts (*X*: loaded Cu/Pt molar ratio)

The loading amounts of Pt and Cu onto the TiN support were estimated by the XRFstandard curve technique. The error of the calibration curve was within 1 %.

Fig. S2 (a) TEM images of the PtCu-*X*/TiN catalysts with different Cu/Pt loadings of X = 0, 0.3, and 2.4. (b, c) STEM-EDS mappings of Pt $L\alpha$, Cu $K\alpha$, and Ti $K\alpha$ for the prepared PtCu-*X*/TiN catalysts in (1) low and (2) high magnifications. (b) X = 0.2 (low Cu loading) and (c) X = 2.4 (high Cu loading).

Fig. S3 (a) Normalized Pt *L*_{III}-edge XANES spectra, (b) k^3 -weighted Pt *L*_{III}-edge EXAFS oscillations, and (c) k^3 -weighted Pt *L*_{III}-edge EXAFS-Fourier transforms (FTs) for the PtCu-*X*/TiN catalysts (X = 0-2.3). $k = 3.0-14.5 \times 10$ nm⁻¹. Observed data: black lines, fitted data (fitting range: $R = 1.9-3.1 \times 10^{-1}$ nm): red lines.

Cu/Pt (XRF)	Shell	CN	$R/10^{-1}$ nm	$\sigma^2/10^{-5} \mathrm{nm}^2$	$\Delta E_0 / eV$	R-factor %
0	Pt-Pt	8.3±0.4	2.76±0.01	6.0±0.2	5.5±0.6	0.2
0.2	Pt-Pt	7.4±0.5	2.74±0.01	7.0±0.2	4.9±0.7	0.1
	Pt-Cu	1.1±0.2	2.68±0.02	9.0	7.4±3.5	0.1
0.3	Pt-Pt	7.0±0.6	2.73±0.01	7.1±0.3	4.9±0.9	0.1
	Pt-Cu	1.3±0.2	2.66±0.02	9.0	5.7±3.6	0.1
1.0	Pt-Pt	5.8±1.3	2.69±0.01	7.7±0.8	3.1±2.0	0.2
	Pt-Cu	2.5±0.4	2.68±0.02	9.0	7.2±3.5	0.2
1.3	Pt-Pt	6.3±1.3	2.69±0.01	8.6±0.8	3.2±2.0	0.1
	Pt-Cu	2.4±0.8	2.66±0.02	9.0 ± 2.2	6.5±3.5	0.1
2.3	Pt-Pt	6.7±1.6	2.70±0.01	6.9±0.9	2.7±2.3	0.2
	Pt-Cu	2.2±0.6	2.65±0.03	9.0	4.9±6.2	0.5

Table S2. Curve-fitting results of Pt L_{III} -edge k^3 -weight EXAFS-FTs for the PtCu-*X*/TiN catalysts (X = 0-2.3)

 S_{0^2} was fixed to 0.94. $k = 3-14.5 \times 10$ nm⁻¹. $R = 1.9-3.1 \times 10^{-1}$ nm. σ^2 values without error range were fixed to σ^2 obtained by the fitting analysis of PtCu-1.3/TiN.

Fig. S4 (a) Normalized Cu *K*-edge XANES spectra of the PtCu-*X*/TiN catalysts (solid lines), Cu foil (black dotted line), and CuO (blue dotted line). (b) Normalized Ti *K*-edge XANES spectra of PtCu-1.0/TiN (blue), Pt/TiN (red), and TiN (black).

Name	Peak	Binding energy /eV	Ratio to total area
D (0+	4f _{7/2}	71.3	0.41
rt.	4f _{5/2}	74.6	0.31
D(2+	4f _{7/2}	74.0	0.13
Pt ⁻	$4f_{5/2}$	77.3	0.10
Cu	Cu 3p	76.0	0.05

Table S3. The Gaussian curve-fitting results of Pt 4f and Cu 3p_{3/2} XPS peaks of PtCu-1.0/TiN in Fig. 4

The energy gap and signal ratio of Pt $4f_{7/2}$ and $4f_{5/2}$ were defined as 3.3 eV and 4/3, respectively. Peak position and width were set as free parameters.

Fig. S5 The relationship of core-level shifts and reported valence states in (a) Pt $4f_{7/2}$ and (b) Cu $2p_{3/2}$. The values of plots were referred from the NIST XPS database.³³ (a) includes Pt (0), PtO (II), Pt(OH)₂ (II), and PtO₂ (IV). (b) includes Cu (0), Cu₂O (I), and CuO (II). Blue and red dotted lines indicate analyzed peak positions by the XPS analysis of the PtCu-1.0/TiN catalyst.

Fig. S6 (a) CV profiles of the prepared PtCu-*X*/TiN catalysts and a commercial Pt/C catalyst (TEC10E50E, TKK) as a reference (black dotted line). (b) Linear sweep voltammograms (the rotary rate of working electrode (WE) at 1600 rpm) and (c) Koutecký-Levich plots at the WE rotary rates of 400, 900, 1600, and 2500 rpm for the PtCu-*X*/TiN catalysts (X = 0 (red), 0.2 (green), 1.0 (blue), 1.3 (orange), and 2.4 (pink)).

,	•	. ,.	
Loaded Cu/Pt*	ECSA /m ² g ⁻¹	SSA /mA cm _{Pt} ⁻²	MSA /A mg _{Pt} ⁻¹
0.0	20.4 ± 0.5	0.86 ± 0.14	0.17 ± 0.02
0.2 ± 0.1	33.4 ± 3.3	1.28 ± 0.14	0.44 ± 0.08
1.0 ± 0.1	54.6 ± 2.7	1.58 ± 0.05	0.86 ± 0.06
1.3 ± 0.1	54.4 ± 4.3	1.24 ± 0.17	0.68 ± 0.13
2.4 ± 0.1	56.4 ± 5.4	1.31 ± 0.11	0.73 ± 0.12
Pt/C	(1) 2	0.25	0.17
(TEC10E50E, TKK)	68.2	0.25	0.17

Table S4. Estimated ECSA, SSA, and MSA for the prepared PtCu-*X*/TiN catalysts (X = 0-2.4) and a commercial Pt/C catalyst (TEC10E50E, TKK),

*Several samples were evaluated and differences in the loaded Cu/Pt in the samples were presented by error range (± 0.1).

Catalyst	ECSA /m ² g ⁻¹	MSA /A mg ⁻¹	SSA /mA cm ⁻²	ref.
TiNiN@Pt	97	0.83	0.49	24
Ti _{0.9} Cu _{0.1} N@Pt/NCNT	100.2	1.06	0.69	25
Pt ₃ Cu nanoframe/TiN architecture	45.7	5.32	2.43	26
$Pt/Ti_{0.9}Co_{0.1}N$	54.9	0.46	0.54	27
PtCu-1.0/TiN	54.6	0.86	1.58	This work

Table S5. Comparison of the ORR performance for the Pt/TiN-based electrocatalysts in

 electrochemical RDE studies from literature and this work,

Catalyst	ECSA /m ² g ⁻¹	Mass-specific power density /W mg ⁻¹	ref.	
Pt/TiN	56	—	38	
Pt/hierarchical TiN nanostructured thin film	42.3	0.3	39	
PtCu-1.0/TiN	60.3	1.5	This work	

Table S6. Comparison of the ORR performance for the Pt/TiN-based electrocatalysts inPEFC MEA from literature and this work,

Fig. S7 The CV profiles of a prepared three-layered MEA using PtCu-1.0/TiN as the cathode (0.11 mg_{Pt} cm⁻², 3 cm \times 3 cm) and changes in the CV profiles during ADT cycles (0–80000 cycles; 0.6 V and 1.0 V for 3 s each under N₂ at the cathode).