Supporting Information

Reversible Transformation of Sub-nanometer Ga-based Clusters to Isolated
$[^4]Ga_{(4Si)}$ Sites Creates Active Centers for Propane Dehydrogenation

Zixuan Chen, Alexander I. Serykh, Agnieszka Kierzkowska, David Gajan, Scott R. Docherty, Alexander V. Yakimov, Paula M. Abdala, Christophe Copéret, Pierre Florian, Alexey Fedorov, Christoph R. Müller

1 Department of Mechanical and Process Engineering, ETH Zürich, Switzerland
2 Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russia
3 Centre de RMN à hauts champs de Lyon, Université de Lyon, UMR 5082 (CNRS, ENS Lyon, Université Lyon 1), Villeurbanne F-69100, France
4 Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
5 CNRS, CEMHTI UPR3079, Université d’Orléans, France

Emails: pierre.florian@cnrs-orleans.fr; fedoroal@ethz.ch; fedoroal@ethz.ch; muelchri@ethz.ch
FIGURES

Figure S1. XRD pattern of Ga$_{1\{650\}}$. ...3
Figure S2. XANES comparison of Ga$_{1\{500\text{-air}\}}$, Ga$_{1\{650\}}$ and the reference material Ga(acac)$_3$.3
Figure S3. Ga K-edge Fourier transformed EXAFS functions (non-phase corrected) of Ga$_{1\{500\text{-air}\}}$ and Ga$_{1\{650\}}$ collected at 50 ºC. ..4
Figure S4. EXAFS fittings of Ga$_{1\{500\text{-air}\}}$ at Ga K-edge: magnitude (top) and imaginary (bottom) parts of the FT in R space. ..4
Figure S5. EXAFS fittings of Ga$_{1\{650\}}$ at Ga K-edge: magnitude (top) and imaginary (bottom) parts of the FT in R space. ..4
Figure S6. Wavelet transform (WT) analysis of EXAFS data for Ga$_{1\{500\text{-air}\}}$ in the R range: (a) 0.5-4 Å and (b) 2-4 Å. ..5
Figure S7. Wavelet transform (WT) analysis of EXAFS data for Ga$_{1\{650\}}$ in the R range: (a) 0.5-4 Å and (b) 2-4 Å. ..5
Figure S8. (a) ADF-STEM image and (b) EXD mapping of Ga$_{1\{650\text{-air}\}}$. ..6
Figure S9. (a) Atomic and weight percentage of Ga content, (b) EDX spectrum and (c) ADF-STEM image and EDX mappings of a selected area of Ga$_{1\{650\text{-air}\}}$. ...6
Figure S10. FTIR spectra of SOMC-prepared Ga@SiO$_2$ after evacuation at 650 ºC and CO adsorption at a pressure of 20 Torr at room temperature. ..7
Figure S11. FTIR spectra of SiO$_2$ in the hydroxyl region outgassed at 300, 400 or 550 ºC.7
Figure S12. FTIR comparison of the hydroxyl region of SiO$_2$ and Ga$_{1\{500\text{-air}\}}$ after evacuation at 300 ºC. ...8
Figure S13. Comparison of the 71Ga MAS NMR spectra (obtained at 20.0 T with a spinning rate of 64 kHz) of Ga$_{1\{500\text{-air}\}}$ and Ga$_{1\{650\text{-air}\}}$ alongside the reference β-Ga$_2$O$_3$. ..8
Figure S14. Propane conversion and product formation rate (mg h$^{-1}$ g$_{\text{cat}}$ $^{-1}$) of C$_3$H$_6$ (blue), C$_2$H$_4$ (green) and CH$_4$ (yellow) on Ga$_{1\{650\}}$ over 20 h TOS. ...9
Figure S15. Normalized propene formation rate (g C$_3$H$_6$ h$^{-1}$ g$_{\text{Ga}}$ $^{-1}$ m$^{-2}$) on Ga$_{1\{650\}}$ over 25 h (5 × 5 h) TOS including four regeneration cycles (synthetic air, 550 ºC, 1 h) performed after every 5 h.9
Figure S1. XRD pattern of Ga$_{1(650)}$.

Figure S2. XANES comparison of Ga$_{1(500-air)}$, Ga$_{1(650)}$ and the reference material Ga(acac)$_3$.
Figure S3. Ga K-edge Fourier transformed EXAFS functions (non-phase corrected) of Ga\textsubscript{1(500-air)} and Ga\textsubscript{1(650)} collected at 50 °C.

Figure S4. EXAFS fittings of Ga\textsubscript{1(500-air)} at Ga K-edge: magnitude (top) and imaginary (bottom) parts of the FT in R space.
Figure S5. EXAFS fittings of Ga\textsubscript{1(650)} at Ga K-edge: magnitude (top) and imaginary (bottom) parts of the FT in R space.

Figure S6. Wavelet transform (WT) analysis of EXAFS data for Ga\textsubscript{1(500-air)} in the R range: (a) 0.5-4 Å and (b) 2-4 Å.

Figure S7. Wavelet transform (WT) analysis of EXAFS data for Ga\textsubscript{1(650)} in the R range: (a) 0.5-4 Å and (b) 2-4 Å.
Figure S8. (a) ADF-STEM image and (b) EXD mapping of Ga$_1$(650-air).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>at %</td>
<td>wt %</td>
</tr>
<tr>
<td>O</td>
<td>67.4</td>
<td>52.5</td>
</tr>
<tr>
<td>Si</td>
<td>31.2</td>
<td>42.6</td>
</tr>
<tr>
<td>Ga</td>
<td>1.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Figure S9. (a) Atomic and weight percentage of Ga content, (b) EDX spectrum and (c) ADF-STEM image and EDX mappings of a selected area of Ga$_1$(650-air).
Figure S10. FTIR spectra of SOMC-prepared Ga@SiO$_2$ after evacuation at 650 °C and CO adsorption at a pressure of 20 Torr at room temperature.

Figure S11. FTIR spectra of SiO$_2$ in the hydroxyl region outgassed at 300, 400 or 550 °C.
Figure S12. FTIR comparison of the hydroxyl region of SiO$_2$ and Ga$_1$(500-air) after evacuation at 300 °C.

Figure S13. Comparison of the 71Ga MAS NMR spectra (obtained at 20.0 T with a spinning rate of 64 kHz) of Ga$_1$(500-air) and Ga$_1$(650-air) alongside the reference β-Ga$_2$O$_3$.
Figure S14. Propane conversion and product formation rate (mg h\(^{-1}\) g\(_{\text{cat}}\)^{-1}) of C\(_3\)H\(_6\) (blue), C\(_2\)H\(_4\) (green) and CH\(_4\) (yellow) on Ga\(_1\)(650) over 20 h TOS.

Reaction conditions: 10\% of C\(_3\)H\(_8\) in N\(_2\), WHSV = 8.5 h\(^{-1}\), T = 550 °C.

Figure S15. Normalized propene formation rate (g C\(_3\)H\(_6\) h\(^{-1}\) g\(_{\text{Ga}}\)^{-1} m\(^{-2}\)) on Ga\(_1\)(650) over 25 h (5 x 5 h) TOS including four regeneration cycles (synthetic air, 550 °C, 1 h) performed after every 5 h.

Reaction conditions: 10\% of C\(_3\)H\(_8\) in N\(_2\), WHSV = 8.5 h\(^{-1}\), T = 550 °C. We assumed that the regeneration cycles did not change the surface area of Ga\(_1\)(650).