Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Reversible Transformation of Sub-nanometer Ga-based Clusters to Isolated ^[4]Ga_(4Si) Sites Creates Active Centers for Propane Dehydrogenation

Zixuan Chen,¹ Alexander I. Serykh,² Agnieszka Kierzkowska,¹ David Gajan,³ Scott R. Docherty,⁴ Alexander V. Yakimov,⁴ Paula M. Abdala,¹ Christophe Copéret,⁴ Pierre Florian,^{5*} Alexey Fedorov,^{1*} Christoph R. Müller^{1*}

¹ Department of Mechanical and Process Engineering, ETH Zürich, Switzerland

² Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russia

³ Centre de RMN à hauts champs de Lyon, Université de Lyon, UMR 5082 (CNRS, ENS Lyon,

Université Lyon 1), Villeurbanne F-69100, France

⁴ Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland

⁵ CNRS, CEMHTI UPR3079, Université d'Orléans, France

Emails: pierre.florian@cnrs-orleans.fr; fedoroal@ethz.chfedoroal@ethz.ch; muelchri@ethz.ch

FIGURES

Figure S1. XRD pattern of Ga1 ₍₆₅₀₎ .	3
Figure S2. XANES comparison of Ga1(500-air), Ga1(650) and the reference material Ga(acac)3	3
Figure S3. Ga K-edge Fourier transformed EXAFS functions (non-phase corrected) of Ga1 _(500-air) and	
Ga1 ₍₆₅₀₎ collected at 50 °C	4
Figure S4. EXAFS fittings of Ga1 _(500-air) at Ga K-edge: magnitude (top) and imaginary (bottom) parts of	:
the FT in R space	1
Figure S5. EXAFS fittings of Ga1 ₍₆₅₀₎ at Ga K-edge: magnitude (top) and imaginary (bottom) parts of	
the FT in R space	5
Figure S6. Wavelet transform (WT) analysis of EXAFS data for Ga1 _(500-air) in the R range: (a) 0.5-4 Å and (b) 2-4 Å.	5
Figure S7. Wavelet transform (WT) analysis of EXAFS data for Ga1 ₍₆₅₀₎ in the R range: (a) 0.5-4 Å and (b) 2-4 Å.	5
Figure S8. (a) ADF-STEM image and (b) EXD mapping of Ga1 _{(650,air}).	5
Figure S9. (a) Atomic and weight percentage of Ga content, (b) EDX spectrum and (c) ADF-STEM	
image and EDX mappings of a selected area of Ga1 _(650-air)	6
Figure S10. FTIR spectra of SOMC-prepared Ga@SiO ₂ after evacuation at 650 °C and CO adsorption at a pressure of 20 Torr at room temperature.	7
Figure S11. FTIR spectra of SiO ₂ in the hydroxyl region outgassed at 300, 400 or 550 °C.	7
Figure S12. FTIR comparison of the hydroxyl region of SiO ₂ and Ga1 _(500-air) after evacuation at 300 °C.	
8	3
Figure S13. Comparison of the ⁷¹ Ga MAS NMR spectra (obtained at 20.0 T with a spinning rate of	
64 kHz) of Ga1 _(500-air) and Ga1 _(650-air) alongside the reference β-Ga ₂ O ₃	3
Figure S14. Propane conversion and product formation rate (mg h ⁻¹ g_{cat}^{-1}) of C ₃ H ₆ (blue), C ₂ H ₄ (green)
and CH ₄ (yellow) on Ga1 ₍₆₅₀₎ over 20 h TOS	Э
Figure S15. Normalized propene formation rate (g_{C3H6} h ⁻¹ g_{Ga}^{-1} m ⁻²) on Ga1 ₍₆₅₀₎ over 25 h (5 × 5 h)	
TOS including four regeneration cycles (synthetic air, 550 °C, 1 h) performed after every 5 h	Э

Figure S1. XRD pattern of Ga1₍₆₅₀₎.

Figure S2. XANES comparison of $Ga1_{(500-air)}$, $Ga1_{(650)}$ and the reference material $Ga(acac)_3$.

Figure S3. Ga K-edge Fourier transformed EXAFS functions (non-phase corrected) of $Ga1_{(500-air)}$ and $Ga1_{(650)}$ collected at 50 °C.

Figure S4. EXAFS fittings of $Ga1_{(500-air)}$ at Ga K-edge: magnitude (top) and imaginary (bottom) parts of the FT in R space.

Figure S5. EXAFS fittings of Ga1₍₆₅₀₎ at Ga K-edge: magnitude (top) and imaginary (bottom) parts of the FT in R space.

Figure S6. Wavelet transform (WT) analysis of EXAFS data for $Ga1_{(500-air)}$ in the R range: (a) 0.5-4 Å and (b) 2-4 Å.

Figure S7. Wavelet transform (WT) analysis of EXAFS data for $Ga1_{(650)}$ in the R range: (a) 0.5-4 Å and (b) 2-4 Å.

Figure S8. (a) ADF-STEM image and (b) EXD mapping of $Ga1_{(650-air)}$.

Figure S9. (a) Atomic and weight percentage of Ga content, (b) EDX spectrum and (c) ADF-STEM image and EDX mappings of a selected area of $Ga1_{(650-air)}$.

Figure S10. FTIR spectra of SOMC-prepared Ga@SiO₂ after evacuation at 650 $^{\circ}$ C and CO adsorption at a pressure of 20 Torr at room temperature.

Figure S11. FTIR spectra of SiO₂ in the hydroxyl region outgassed at 300, 400 or 550 °C.

Figure S12. FTIR comparison of the hydroxyl region of SiO₂ and Ga1_(500-air) after evacuation at 300 °C.

Figure S13. Comparison of the ⁷¹Ga MAS NMR spectra (obtained at 20.0 T with a spinning rate of 64 kHz) of Ga1_(500-air) and Ga1_(650-air) alongside the reference β -Ga₂O₃.

Figure S14. Propane conversion and product formation rate (mg $h^{-1} g_{cat}^{-1}$) of C₃H₆ (blue), C₂H₄ (green) and CH₄ (yellow) on Ga1₍₆₅₀₎ over 20 h TOS.

Reaction conditions: 10% of C_3H_8 in N_2 , WHSV = 8.5 h⁻¹, T = 550 °C.

Figure S15. Normalized propene formation rate (g_{C3H6} h⁻¹ g_{Ga}^{-1} m⁻²) on Ga1₍₆₅₀₎ over 25 h (5 × 5 h) TOS including four regeneration cycles (synthetic air, 550 °C, 1 h) performed after every 5 h.

Reaction conditions: 10% of C₃H₈ in N₂, WHSV = 8.5 h⁻¹, T = 550 °C. We assumed that the regeneration cycles did not change the surface area of Ga1₍₆₅₀₎.