Supplementary Materials for

The Lattice oxygen determines the methanol selectivity in CO_2 hydrogenation over $ZnZrO_x$ catalysts

This PDF file includes:

Table. S1. Catalytic performance of the $ZnZrO_x$ catalyst. Reaction conditions: 5.0 MPa, $H_2/CO_2 = 3:1$, GHSV = 24,000 mL/(g·h),325 °C.

Table. S2. Catalytic performance of the $ZnZrO_x$ catalysts in literature for CO_2 hydrogenation to methanol.

Table. S3. Arrhenius plots of CO₂ hydrogenation over ZZ-320 and ZZ-500.

Table. S4. Elemental content of ZZ-320 catalyst from EDS results.

Table. S5. d-spacings of catalysts calculated using the Bragg equation from XRD.

Table. S6. The BET results from catalysts with various grinding speeds.

Table. S7. Deconvolution results of O 1s XPS peaks.

Table. S8. Quantitative results of the H₂-TPR,O₂-TPD,CO₂-TPD.

Fig. S1. The CO₂ conversion and the CH₃OH Selectivity of catalysts prepared with various grinding speeds. Reaction conditions: 325 °C,5.0 MPa, $H_2/CO_2 = 3:1$, GHSV = 24,000 mL/(g·h).

Fig. S2. Catalytic performance of the catalyst. (a) CO_2 conversion (b) CH_3OH Selectivity and (c) CH_3OH Yield of catalysts prepared at various Zr/Zn metal ratios. Reaction conditions: 5.0 MPa, $H_2/CO_2 = 3:1$, GHSV = 24,000 mL/(g·h).

Fig. S3. The EDS element energy spectrum of ZZ-320 catalyst.

Fig. S4. XRD patterns of catalysts with different Zr/Zn ratios.

Fig. S5. Nitrogen adsorption-desorption isotherms of catalysts prepared with various grinding speeds.

Fig. S6. Aperture distribution diagram catalysts prepared with various grinding speeds.

Fig. S7. O 1s XPS of catalysts with different Zr/Zn ratios.

Fig. S8. Zn 2p and Zr 3d XPS of catalysts with different Zr/Zn ratios.

Fig. S9. Zn LM XPS of catalysts with different Zr/Zn ratios.

Fig. S10. Zr/Zn metal ratio in the surface region of ZnO-ZrO₂ measured by XPS.

Fig. S11. H₂-TPR profiles of ZnO/ZrO_2 and $ZnZrO_x$ catalysts.

Fig. S12. Temperature-dependent in-situ DRIFTS spectra in H_2 over ZZ-320 and ZZ-500. (Conditions: 100–400 °C, 0.1 MPa, H_2 , 40 mL/min, after reaction gas pretreatment).

	CO ₂	Product	tion Sele	ectivity	Vield		
Catalyst	Conversion	(%)			i iciu		
	(%)	CH ₃ OH	CH ₄	CO	$(mg/(g_{cat} \cdot h))$	$(mg/(m^2 \cdot h))$	
ZZ-200	3.59	45.18	0.35	54.21	137.9	4.4	
ZZ-300	5.06	52.90	0.66	46.21	170.8	4.4	
ZZ-320	5.18	72.17	0.2	27.48	273.4	5.9	
ZZ-350	4.19	55.17	1.75	42.88	170.0	3.9	
ZZ-400	4.08	41.42	4.83	53.53	126.2	4.5	
ZZ-500	3.98	37.13	2.45	59.91	86.52	3.2	
Zr/Zn=19	4.95	32.59	7.08	60.23	114.0	3.9	
Zr/Zn=3	3.36	54.9	1.44	43.23	135.2	3.7	
ZnO-ZrO ₂	1.14	35.17	3.21	60.46	30.35	-	

Table. S1. Catalytic performance of the $ZnZrO_x$ catalyst. Reaction conditions: 5.0 MPa, $H_2/CO_2 = 3:1$, GHSV = 24,000 mL/(g·h), 325 °C.

Table. S2. Catalytic performance of the $ZnZrO_x$ catalysts in literature for CO_2 hydrogenation to methanol.

	Temnerature	Pressure	GHSV	H./	CO_2	CH ₃ OH
Catalyst		(MPa)	(mI /a-1.h-1)		Conversion	Selectivity
	(0)	(1911 a)	(IIIL/g II)	CO_2	(%)	(%)
ZZ-320	325	5	24000	3	5.2	72.2
$ZnO-ZrO_2(Zn/Zr = 1:1)^1$	320	3	24000	3	5.7	70.0
$Co_{3}O_{4}-ZrO_{2}(Co/Zr)$ $=3:1)^{1}$	320	3	24000	3	1.9	1.0
$CuO-ZrO_2(Cu/Zr = 3:1)^1$	320	3	24000	3	14.0	20.3
$ZnInO_x^2$	300	2	24000	3	4.7	47.0
11.5%GaZrO _x ²	300	2	24000	3	2.4	75.0
15ZnZr-600 ³	340	3	24000	3	7.4	55.8
GaZnZrO _x ⁴	320	5	24000	3	8.8	85.0
ZrZn-15 ⁵	350	3	12000	3	7.0	50.0
20% ZnO-ZrO ₂ (CP) ⁶	320	5.5	24000	3	7.0	87.0
0.8%PdZnZrO _x ⁷	280	5	24000	4	7.8	56.0
ZnZrO _x -RA ⁸	320	5	24000		4.4	94.0
13ZnZrO _x ,FSP ⁹	320	5	24000	4	7.0	80.0
5.0% Zn-CdZrO _x ¹⁰	320	5	24000	4	8.5	80.8
13%ZnO-ZrO ₂ ¹¹	320	5	24000	4	10.0	86.0

Catalyst	Ea (KJ/mol)	Correlation factor
Z-200	24.45	0.97
ZZ-320	22.86	0.97
ZZ-500	35.64	0.99

Table. S3. Arrhenius plots of CO₂ hydrogenation over ZZ-320 and ZZ-500.

Table. S4. Elemental content of ZZ-320 catalyst from EDS results

Element	Atomic (%)	Error (%)
0	47.07	0.30
Zn	9.41	0.26
Zr	43.52	0.08

Table. S5. d-spacings of catalysts calculated using the Bragg equation from XRD.

Catalyst	The average diameter of grains by XRD
	(nm)
ZZ-200	6.5
ZZ-300	7.2
ZZ-320	8.3
ZZ-350	7.4
ZZ-400	7.6
ZZ-500	6.3

Table. S6. The BET results from catalysts with various grinding speeds.

Catalyst	BET Surface Area(m ² /g)	Pore Volume (cm ³ /g)	Pore Size (nm)
ZZ-200	31.2	0.054	5.8
ZZ-300	38.5	0.0632	5.6
ZZ-320	46.5	0.0638	3.9
ZZ-350	43.3	0.0625	5.4
ZZ-400	28.1	0.0460	6.6
ZZ-500	27.1	0.0265	8.2

Table. S7. Deconvolution results of O 1s XPS peaks.

Catalyst	O species (%)					
	ΟΙ	Ο _{II}	O _{III}			
Zr/Zn=19	55.12	34.02	10.86			
Zr/Zn=6	71.10	22.10	6.80			
Zr/Zn=3	53.83	30.88	15.29			

Catalyst	H ₂ uptake in H ₂ - TPR (mmol/g) CO ₂ uptake in CO ₂ -TPD (mmol/g)			O2 uptake in O2-TPD (mmol/g)			
ZZ-320	332°C	617°C	100 °C	408 °C	82 °C	461 °C	658 °C
	0.0041	0.54	0.66	0.35	44.42	72.60	51.65
ZZ-500	337°C	617°C	108 °C	414 °C	76 °C	444 °C	642 °C
	0.0017	0.49	0.46	0.12	37.67	0.079	0.087

Table. S8. Quantitative results of the H₂-TPR, O₂-TPD, CO₂-TPD.

Fig. S1. The CO₂ conversion and the CH₃OH Selectivity of catalysts prepared with various grinding speeds. Reaction conditions: 325 °C, 5.0 MPa, $H_2/CO_2 = 3:1$, GHSV = 24,000 mL/(g·h).

Fig. S2. Catalytic performance of the catalyst. (a) CO_2 conversion (b) CH_3OH selectivity and (c) CH_3OH yield of catalysts prepared at various Zr/Zn metal ratios. Reaction conditions: 5.0 MPa, $H_2/CO_2 = 3:1$, GHSV = 24,000 mL/(g·h).

Fig. S3. The EDS element energy spectrum of ZZ-320 catalyst.

Fig. S4. XRD patterns of catalysts with different Zr/Zn ratios.

Fig. S5. Nitrogen adsorption-desorption isotherms of catalysts prepared with various grinding speeds.

Fig. 6. Aperture distribution diagram catalysts prepared with various grinding speeds. (a)ZZ-200, (b)ZZ-300, (c)ZZ-320, (d)ZZ-350, (e)ZZ-400, (f)ZZ-500.

Fig. S7. O 1s XPS of catalysts with different Zr/Zn ratios.

Fig. S8. Zn 2p (a) and Zr 3d (b) XPS of catalysts with different Zr/Zn ratios.

Fig. S9. Zn LM XPS of catalysts with different Zr/Zn ratios.

Fig. S10. Zr/Zn metal ratio in the surface region of ZnO-ZrO₂ measured by XPS.

Fig. S11. H₂-TPR profiles of ZnO/ZrO₂ and ZnZrO_x catalysts.

Fig. S12. Temperature-dependent in-situ DRIFTS spectra in H_2 over ZZ-320 and ZZ-500. (Conditions: 100–400 °C, 0.1 MPa, H_2 , 40 mL/min, after reaction gas pretreatment).

References :

(1) Li, W.; Wang, K.; Huang, J.; Liu, X.; Fu, D.; Huang, J.; Li, Q.; Zhan, G. M_xO_y -Zr O_2 (M = Zn, Co, Cu) Solid Solutions Derived from Schiff Base-Bridged UiO-66 Composites as High-Performance Catalysts for CO₂ Hydrogenation. *ACS Appl. Mater. Interfaces* **2019**, *11* (36), 33263-33272. DOI: 10.1021/acsami.9b11547.

(2) Wang, J.; Tang, C.; Li, G.; Han, Z.; Li, Z.; Liu, H.; Cheng, F.; Li, C. High-Performance MaZrO_x
(Ma = Cd, Ga) Solid-Solution Catalysts for CO₂ Hydrogenation to Methanol. *ACS Catal.* 2019, 9 (11), 10253-10259. DOI: 10.1021/acscatal.9b03449.

(3) Temvuttirojn, C.; Poo-arporn, Y.; Chanlek, N.; Cheng, C. K.; Chong, C. C.; Limtrakul, J.; Witoon, T. Role of Calcination Temperatures of ZrO₂ Support on Methanol Synthesis from CO₂ Hydrogenation at High Reaction Temperatures over ZnO_x/ZrO₂ Catalysts. *Ind. Eng. Chem. Res* **2020**, *59* (13), 5525-5535. DOI: 10.1021/acs.iecr.9b05691.

(4) Sha, F.; Tang, C.; Tang, S.; Wang, Q.; Han, Z.; Wang, J.; Li, C. The promoting role of Ga in ZnZrO_x solid solution catalyst for CO₂ hydrogenation to methanol. *J Catal* **2021**, *404*, 383-392. DOI: 10.1016/j.jcat.2021.09.030.

(5) Ticali, P.; Salusso, D.; Ahmad, R.; Ahoba-Sam, C.; Ramirez, A.; Shterk, G.; Lomachenko, K. A.; Borfecchia, E.; Morandi, S.; Cavallo, L.; et al. CO₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO₂/zeolite catalysts. *Catal. Sci. Technol* **2021**, *11* (4), 1249-1268. DOI: 10.1039/d0cy01550d.

(6) Han, Z.; Tang, C.; Sha, F.; Tang, S.; Wang, J.; Li, C. CO₂ hydrogenation to methanol on ZnO-ZrO₂ solid solution catalysts with ordered mesoporous structure. *J Catal* **2021**, *396*, 242-250. DOI: 10.1016/j.jcat.2021.02.024.

(7) Lee, K.; Anjum, U.; Araújo, T. P.; Mondelli, C.; He, Q.; Furukawa, S.; Pérez-Ramírez, J.; Kozlov,
S. M.; Yan, N. Atomic Pd-promoted ZnZrO solid solution catalyst for CO₂ hydrogenation to methanol. *Appl. Catal. B* 2022, *304.* DOI: 10.1016/j.apcatb.2021.120994.

(8) Sha, F.; Tang, S.; Tang, C.; Feng, Z.; Wang, J.; Li, C. The role of surface hydroxyls on ZnZrO solid solution catalyst in CO₂ hydrogenation to methanol. *Chinese J. Catal.* **2023**, *45*, 162-173. DOI: 10.1016/s1872-2067(22)64176-7.

(9) Pinheiro Araújo, T.; Morales-Vidal, J.; Zou, T.; Agrachev, M.; Verstraeten, S.; Willi, P. O.; Grass, R. N.; Jeschke, G.; Mitchell, S.; López, N.; et al. Design of Flame-Made ZnZrO_x Catalysts for Sustainable Methanol Synthesis from CO₂. *Adv. Energy Mater.* 2023, *13* (14). DOI: 10.1002/aenm.202204122.

(10) Ma, X.; Li, X.; Yang, X.; Tian, X.; Zhan, H.; Wang, W.; Lv, P.; Ma, B. Zn-CdZrO_x solid solution catalysts for hydrogenation of CO₂ to methanol. *Fuel* 2023, *346*. DOI: 10.1016/j.fuel.2023.128376.
(11) Jijie Wang, Z. L., Chizhou Tang, Zhaochi Feng, Hongyu An, Hailong Liu, Taifeng Liu, Can Li. A highly selective and stable ZnO-ZrO₂ solid solution catalyst for CO₂ hydrogenation to methanol. *Sci. Adv.* 2017, *3*. DOI: 10.1126/sciadv.1701290.