Supporting Information

Facile synthesis of ZnIn₂S₄@ZnS composites for efficient photocatalytic hydrogen precipitation

Xixi Yuan,^a Peng Li,^{*a} Siyu Wang,^a, Puyu Liu,^a Jianwei Zhao,^{*b} Tao Wang^a and Kun

Chang*a

^a Centre for Hydrogenergy, College of Material Science and Engineering, Nanjing University

of Aeronautics and Astronautics, Nanjing 210016, China

^b School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314041, China.

*Corresponding Author:

E-mail: LPeng@nuaa.edu.cn, changkun@nuaa.edu.cn

Solid solution	Bandgap(eV)
ZnS	3.30
$ZnIn_2S_4$	2.32
$ZnIn_2S_4@ZnS-0.1$	2.67
ZnIn ₂ S ₄ @ZnS-0.2	2.79
$ZnIn_2S_4@ZnS-0.3$	2.83
ZnIn ₂ S ₄ @ZnS-0.4	2.80

Table S1 Forbidden bandwidths of ZnS, ZnIn $_2S_4$, and ZnIn $_2S_4$ @ZnS composites

Sample	S_{BET} (cm ² g ⁻¹)
ZnS	42.4
$ZnIn_2S_4$	63.7
ZnIn ₂ S ₄ @ZnS-0.3	122.3

Table S2 The specific surface area of ZnS, $ZnIn_2S_4$, and $ZnIn_2S_4$ @ZnS-0.3 composites

Sample	A ₁	$ au_1/ns$	A_2	τ_2/ns	$ au_A/ns$	
ZnS	3669.462836	4.997448382	1.504421593	46.18591969	5.152923741	
ZnIn ₂ S ₄	1.094521681	46.3660603	3647.438595	5.164508648	5.275209942	
ZnIn ₂ S ₄ @ZnS-0.1	1.061505896	50.37345998	3315.746995	6.050665775	6.168483548	
ZnIn ₂ S ₄ @ZnS-0.2	3002.544533	6.795660056	1.029964753	73.71889169	7.043769831	
ZnIn ₂ S ₄ @ZnS-0.3	2885.268962	7.339865278	1.63060833	80.36808148	7.788993527	
ZnIn ₂ S ₄ @ZnS-0.4	3175.184648	7.019308123	1.751626806	70.19563146	7.365927938	
Table S3 Fitting results for carrier lifetimes of ZnS, ZnIn ₂ S ₄ , and ZnIn ₂ S ₄ @ZnS composites						

Table S4 Comparison of the photocatalytic hydrogen production rates reported in the
literature with those of the prepared ZnIn ₂ S ₄ /ZnS

Photocatalysts	The quality of sample	Sacrificial agent	Light source (Xe lamp)	Activity (mmol g ⁻¹ h ⁻¹)	Ref.
ZnIn ₂ S ₄ /ZnS	100 mg	Na ₂ S/ Na ₂ SO ₃	300W (λ≥420nm)	2.873	This work
Ag ₂ S/ZnIn ₂ S ₄ /ZnS	100 mg	Na ₂ S/ Na ₂ SO ₃	300W (λ≥420nm)	0.703	1
ZIF-derived ZnS/ZnIn ₂ S ₄	50 mg	TEOA	300W (AM 1.5 G)	0.453	2
$ZnIn_2S_4/ZnS$	20 mg	Na ₂ S/ Na ₂ SO ₃	300W	8.502	3
ZnIn ₂ S ₄ /CNTs/ZnS	50 mg	10 vol% Methanol	300W (λ≥420nm)	0.936	4
$ZnIn_2S_4/ZnS$	100 mg	Na ₂ S/ Na ₂ SO ₃	300W (λ≥420nm)	2.633	5
ZnO/ZnS	10 mg	Na ₂ S/ Na ₂ SO ₃	300W (AM 1.5 G)	2.461	6
ZnO/ZnS	50 mg	Na ₂ S/ Na ₂ SO ₃	300W (AM 1.5 G)	0.500	7

Fig. S1 XPS images of $ZnIn_2S_4@ZnS-0.3$ before and after the hydrogen production cycle test

Notes and references

- 1 R. Wang, L. Zhao, L. Li, Q. Song and J. Huang, *Journal of Physics and Chemistry* of Solids, 2020, **136**, 109148.
- 2H. Song, N. Wang, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang and T. Sun, *Dalton Trans.*, 2020, **49**, 10816–10823.
- 3 M. Li, S. Li, Y. Li, P. He, Y. Xiao, J. Chen and T. Ren, *Materials Letters*, 2023, **334**, 133757.
- 4C. Zhang, K. Gao, H. Zhu, J. Liu, J. Chen, F. Xie, W. Xie and X. Wang, *ChemCatChem*, 2022, **14**, e202200225.
- 5S. Liu, Y. Mao, Z. Su, F. Fang, K. Li, Y. Wu, P. Liu, P. Li and K. Chang, *Catal. Sci. Technol.*, 2023, 10.1039.D3CY00298E.
- 6H. Ren, K. Ye, H. Chen, F. Wang, Y. Hu, Q. Shi, H. Yu, R. Lv and M. Chen, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2022, **652**, 129844.
- 7V. Poliukhova, S. Khan, Z. Qiaohong, J. Zhang, D. Kim, S. Kim and S.-H. Cho, *Applied Surface Science*, 2022, **575**, 151773.