Supporting Information

Investigations into the influence of nickel loading on MoO₃modified catalysts for the gas-phase hydrodeoxygenation of anisole

Simon Haida, Sebastian Löbner, Henrik Lund, Stephan Bartling, Carsten Kreyenschulte, Hanan Atia, Ali M. Abdel-Mageed, Christoph Kubis* and Angelika Brückner*

*E-mail: catalysis.de, angelika.brueckner@catalysis.de, angelika.brueckner@catalysis.de, angelika.brueckner@catalysis.de, angelika.brueckner@catalysis.de, angelika.brueckner@catalysis.de)

Supporting Information - Table of Contents

		page
SI-A	Additional experimental part	SI-1
SI-B	Catalytic results	SI-2
SI-C	BET-surface areas	SI-13
SI-D	Scanning electron microscopy	SI-14
SI-E	TG-MS	SI-16
SI-F	Ni 2p XP spectra of spent catalysts	SI-17
SI-G	Pseudo in-situ XPS experiments	SI-18
SI-H	TPR of fresh catalysts	SI-21
SI-I	Anisole DRIFTS adsorption experiments	SI-23
SI-J	NH ₃ -adsorption transmission FTIR experiments	SI-25
SI-K	In-situ XRD experiments	SI-28

SI-A: Additional experimental part

Pseudo in situ X-ray photoelectron spectroscopy (XPS) measurements were performed in a laboratory Near Ambient Pressure (NAP) X-ray photoelectron spectroscopy system (NAP-XPS, SPECS Surface Nano Analysis GmbH, Germany). The setup is equipped with a differentially pumped Phoibos 150 electron energy analyser and a monochromated Al Kα radiation source (E = 1486.6 eV) operated at 70 W and 15 kV. The system is connected to a High-Pressure Cell (HPC 20, SPECS Surface Nano Analysis GmbH, Germany) which offers sample heating by a halogen lamp (up to 800 °C) and is equipped with 4 mass flow controllers (MFC's) at the gas inlet and a manual back pressure regulator (Swagelok, USA) at the outlet. For the current experiments at ambient pressure conditions the samples were heated with 10 K/min to 325°C in N_2 . Then the desired gas mixture (H_2 , CH_4 : H_2) was applied for different times before the sample was cooled down in N₂ again. The cell was evacuated, and the sample could be transferred under vacuum to the measurement chamber. The powder samples are pressed on a stainless-steel sample plate using a laboratory press with 5 mm diameter and a load of about 0.5 t. Temperature is monitored by a thermocouple on the sample plate pressed to the sample surface. The electron binding energies are referenced to the C1s core level of carbon at 284.8 eV (C-C and C-H bonds). For analysis, the peaks were deconvolved with Gaussian-Lorentzian curves using the software Unifit 2023.

Si-B: Catalytic results

Figure SI 1: Averaged conversion and selectivities of the relevant compounds for MoO_3 at T = 325 °C, prereduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 µm, 200 mg cat. diluted with 2.3 g quartz.

Table SI 1: Single run catalytic performance data. Catalyst: MoO ₃ . Anisole conversion and product selectivities	(C-
mol%) at 325 °C, WHSV = 0.31 g _{anisole} ·g ⁻¹ _{cat} ·h ⁻¹ and TOS = 10 h.	

Nr	X(Anisole)	S(Methane)	S(Benzene)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	39.76	3.71	30.23	6.57	2.06	19.41	8.93	7.98	96.4
2	34.74	3.64	30.08	7.14	2.28	17.02	7.69	7.31	94.6
3	34.41	3.23	26.35	6.01	1.81	18.13	8.41	7.63	95.1
4	36.14	3.10	25.32	5.63	1.74	17.77	9.09	8.25	94.3
5	32.20	3.40	27.63	6.33	2.08	20.54	9.74	8.24	97.4

S(Uncalibrated): Unknown compounds, response factor for anisole used for calculation.

C Yield: Ratio of sum of all integral values of all components including not-converted anisole during catalytic reaction divided by the integral value of initial anisole feed.

Figure SI 2: Averaged conversion and selectivities of the relevant compounds for NiMoO₄ at T = 325 °C, prereduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 $g_{anisole} \cdot g^{-1}_{cat} \cdot h^{-1}$, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 2: Single run catalytic performance data. Catalyst: NiMoO₄. Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = $0.31 \text{ g}_{anisole} \cdot \text{g}^{-1}_{cat} \cdot \text{h}^{-1}$ and TOS = 10 h.

Nr.	X(Anisole)	S(Methane)	S(Benzene)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	97.71	20.88	41.52	9.92	2.88	4.29	1.38	2.57	98.2
2	98.11	19.98	42.42	10.05	2.83	4.69	1.41	2.36	98.5

Figure SI 3: Averaged conversion and selectivities of the relevant compounds for Ni(5)MoO₃ at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole} g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 3: Single run catalytic performance data. Catalyst: Ni(5)MoO₃. Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = $0.31 g_{anisole} \cdot g^{-1}_{cat} \cdot h^{-1}$ and TOS = 10 h.

Nr	X(Anisole)	S(Methane)	S(Benzene)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	80.98	4.16	32.24	8.87	3.12	16.91	12.83	9.11	101.8
2	81.25	4.24	32.58	8.87	3.18	17.57	12.74	9.36	101.7

Figure SI 4: Averaged conversion and selectivities of the relevant compounds for Ni(3)MoO₃ at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 4: Single run catalytic performance data. Catalyst: Ni(3)MoO₃. Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = $0.31 \text{ g}_{anisole} \text{ g}^{-1}_{cat} \cdot \text{h}^{-1}$ and TOS = 10 h.

Nr	X(Anisole)	S(Methane)	S(Benzene)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	79.23	3.69	33.68	10.29	3.9	13.94	11.05	7.96	100.7
2	81.28	3.67	32.76	9.70	3.45	15.57	12.08	8.95	101.7
3	80.91	3.69	32.22	9.11	3.22	15.63	12.16	8.65	99.6

Figure SI 5: Averaged conversion and selectivities of the relevant compounds for Ni(1)MoO₃ at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 5: Single run catalytic performance data. Catalyst: Ni(1)MoO₃. Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = $0.31 \text{ g}_{anisole} \cdot \text{g}^{-1}_{cat} \cdot \text{h}^{-1}$ and TOS = 10 h.

Nr	X(Anisole)	S(Methane)	S(Benzene)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	56.15	3.39	30.22	7.51	2.51	19.28	12.31	9.04	99.1
2	56.86	3.89	33.24	8.15	3.21	16.39	11.46	9.69	99.6

Figure SI 6: Conversion and selectivities of the relevant compounds for CoMoO₄ at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 6: CoMoO₄ Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = 0.31 $g_{anisole} \cdot g^{-1}_{cat} \cdot h^{-1}$ and TOS = 10 h.

Nr	X(Anisole)	S(Methane)	S(Benzene)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	44.6	3.23	25.29	5.70	2.04	27.93	14.46	20.97	104.9

.

Figure SI 7: Conversion and selectivities of the relevant compounds for Co(5)MoO₃ at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 7: Co(5)MoO₃ Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = 0.31 $g_{anisole} \cdot g^{-1}_{cat} \cdot h^{-1}$ and TOS = 10 h.

Nr	X(Anisole)	S(Methane)	S(Benzene	S(Toluene)	S(Xylenes)	S(Phenol	S(Cresols	S(Uncalibrated)	C Yield
•))		
1	49.33	3.62	27.77	5.57	1.96	28.89	16.07	16.85	105.0

Figure SI 8: Conversion of anisole and selectivities of the relevant products for Ni/ α -Al₂O₃ (Ni content: 3 wt.%) as catalyst at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 µm, 200 mg cat. diluted with 2.3 g quartz.

Table SI 8: Single run catalytic performance data. Catalyst: Ni/ α -Al₂O₃ (Ni content: 3 wt.%). Anisole conversion and product selectivities (C-mol%) at 325 °C, WHSV = 0.31 g_{anisole}·g⁻¹_{cat}·h⁻¹ and TOS = 10 h.

Nr	X(Anisole)	S(Methane)	S(Benzene	S(Toluene)	S(Xylenes)	S(Phenol	S(Cresols	S(Uncalibrated)	C Yield
•		. ,			., ,))		
1	16.71	44.19	25.76	0.00	0.00	0.00	0.00	0.00	96.1

Figure SI 9: Conversion of benzene and product selectivities for NiMoO₄ as catalyst at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 6.30 g_{benzene}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 9: Single run catalytic performance data. Catalyst: NiMoO₄. Benzene conversion and product selectivities (C-mol%) at 325 °C, WHSV = $6.30 \text{ g}_{\text{benzene}} \cdot \text{g}^{-1}_{\text{cat}} \cdot \text{h}^{-1}$ and TOS = 10 h.

Nr	X(Benzene)	S(Methane)	S(Anisole)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	4.05	21.05	0.00	8.64	0.00	0.00	0.00	2.53	97.4

Figure SI 10: Conversion of benzene and product selectivities for Ni(5)MoO₃ as catalyst at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 6.30 g_{benzene}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 μ m, 200 mg cat. diluted with 2.3 g quartz.

Table SI 10: Single run catalytic performance data. Catalyst: Ni(5)MoO₃. Benzene conversion and product selectivities (C-mol%) at 325 °C, WHSV = $6.30 \text{ g}_{\text{benzene}} \cdot \text{g}^{-1}_{\text{cat}} \cdot \text{h}^{-1}$ and TOS = 10 h.

Nr	X(Benzene)	S(Methane)	S(Anisole)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	3.32	2.76	0.00	1.62	0.00	0.00	0.00	0.97	97.8

Figure SI 11: Conversion of benzene and product selectivities for Ni/ α -Al₂O₃ (Ni content: 3 wt.%) as catalyst at T = 325 °C, pre-reduced in 100 % H₂ for 2 h at 325 °C, WHSV = 6.30 g_{benzene}·g⁻¹_{cat}·h⁻¹, particle size = 600-800 µm, 200 mg cat. diluted with 2.3 g quartz.

Table SI 11: Single run catalytic performance data. Catalyst: Ni/Al₂O₃ (Ni content: 3 wt.%). Benzene conversion and product selectivities (C-mol%) at 325 °C, WHSV = $6.30 \text{ g}_{\text{benzene}} \cdot \text{g}^{-1}_{\text{cat}} \cdot \text{h}^{-1}$ and TOS = 10 h.

	-	-							
Nr	X(Benzene)	S(Methane)	S(Anisole)	S(Toluene)	S(Xylenes)	S(Phenol)	S(Cresols)	S(Uncalibrated)	C Yield
1	0.69	18.17	0.00	5.82	0.00	0.00	0.00	0.78	98.9

SI-C: BET-surface areas

Sample	Fresh catalyst [m²/g]	Spent catalyst [m ² /g]		
MoO ₃	3	7		
Ni(5)MoO₃	15	18		
NiMoO ₄	40	32		

Table SI 12: BET-surface areas of fresh and spent samples

SI-D: Scanning electron microscopy

Figure SI 12: SEM overview images in BSE mode of fresh Ni(5)MoO₃ a) SEM image b) overlaid with the color image of the elemental distributions of Mo (yellow) and Ni (cyan) calculated from the EDX spectra from the area of c) and d) the EDX spectra of fresh Ni(5)MoO₃.

Figure SI 13: SEM overview images in SE mode of spent Ni(5)MoO₃ a) SEM image b) overlaid with the color image of the elemental distributions of Mo (yellow) and Ni (cyan) calculated from the EDX spectra from the area of c) and d) the EDX spectra of spent Ni(5)MoO₃.

SI-E: TG-MS

Figure SI 14: TG-MS measurement of spent catalysts in syn. air with a temperature ramp of 10 °C/min.

Figure SI 15: Ni 2p XP spectra of a) fresh Ni(5)MoO₃ b) spent Ni(5)MoO₃ after 17 h TOS at 325 °C.

Figure SI 16: Ni 2p XP spectra of a) fresh NiMoO₄ b) spent NiMoO₄ after 17 h TOS at 325 °C.

SI-G: Pseudo in-situ XPS experiments

Figure SI 17: Mo3d Pseudo in-situ XP spectra. a) fresh NiMoO₄ b) NiMoO₄ after reduction in 100 % H_2 for 2 h at 325 °C.

Figure SI 18: Mo3d Pseudo in-situ XP spectra. a) fresh Ni(5)MoO₃ b) Ni(5)MoO₃ after reduction in 100 % H_2 for 2 h at 325 °C.

Figure SI 19: Mo3d Pseudo in-situ XP spectra. a) fresh MoO_3 b) MoO_3 after reduction in 100 % H_2 for 2 h at 325 °C.

Figure SI 20: Ni 2p pseudo in-situ XP spectra. a) fresh NiMoO₄ b) NiMoO₄ after reduction in 100 % H_2 for 2 h at 325 °C.

Figure SI 21: Ni 2p pseudo in-situ XP spectra. a) fresh Ni(5)MoO₃ b) Ni(5)MoO₃ after reduction in 100 % H_2 for 2 h at 325 °C.

SI-H: TPR of fresh catalysts

Temperature programmed reduction (TPR) measurements were performed in a 3-Flex with a quartz tube reactor and a thermal conductivity detector for quantification. Around 50 mg of the samples were loaded in the reactor and pretreated at 400 °C (20 K/min) under the flow of $5\%O_2$ /He for 30 min to remove any adsorbed species on the surface of the samples. After then, the sample is cooled to RT under Ar flow. Then, the flow was changed to 50 ml/min H₂/Ar and the sample was then ramped to 850 °C at a heating rate of 10 K/min. The temperature was held at 850 °C for 90 min. The hydrogen consumption peaks were recorded with temperature and quantitative analysis of the TPR data, based on the peak areas, was calculated after calibration.

Figure SI 22: TPR of fresh catalysts in 5% H₂ with 10 °C/min; m \approx 20 mg.

TPR patterns of MoO₃, Ni(5)MoO₄ and NiMoO₄ catalysts are presented in Figure SI 16. The reduction peaks appeared in three regions: one started above 300 °C, the next higher than 600 °C and the last at high temperatures above 800 °C. For the MoO₃ sample, the H₂ the reduction starts above 600 °C, and the major consumption peak appeared at 777 °C corresponding to the reduction of MoO₃ to MoO_x (Mo⁵⁺ and Mo⁴⁺ species).^{1,2} At higher temperature above 800 °C, the peak was assigned to the reduction of MoO_x to metallic Mo⁰. For NiMoO₄, two characteristic lower reduction peaks compared to MoO₃ and Ni(5)MoO₄ at around 563 and 785 °C were observed. The shoulder present in MoO₃ at 705°C is shifted to lower temperature (<400 °C) and its intensity decreased with the increase of Ni content. In this context, incorporation of Ni species, especially with the high content (26 %) as in the sample NiMoO₄ all reduction peaks of Mo species shifted to the lower temperature compared with those of MoO₃ alone and/or Ni(5)MoO4 which showed slight shift to lower reduction temperatures. Ni could promote the low-temperature reduction of MoO₃ should be 20800, and experimentally 20750 µmol/g was determined indicating full reduction of the MoO₃. The same was found for the Ni doped MoO₃ samples.

- 1) S. Qiu, Z. Huang, X. Sang, Y. Liu, Q. Zhang, Q. Chen, Q. Meng, T. Wang, *Fuel Process. Technol.* **2023**, *242*, 107647.
- 2) S. Li, Y. Lv, G. Song, C. Li, D. Gao, G. Chen, *RSC Advances* 2019, **9**, 4571-4582.
- 3) S. Qiu, T. Wang, Y. Fang, Fuel Process. Technol. 2019, 183, 19-26.

SI-I: Anisole DRIFTS adsorption experiments

Figure SI 23: Comparison methane evolution after benzene adsorption in He and switch to H_2 at 325 °C and pre-reduction at 325 °C in 100 % H_2 for a) NiMoO₄ and CoMoO₄.

Figure SI 24: DRIFT spectra of a) benzene adsorption of Ni(5)MoO₃ in He and b) switch to H₂ at 325 °C.

Figure SI 25: Relative integral values of absorption band at 1250 cm $^{\text{-}1}$ at 325 °C in H_2.

SI-J: NH₃-adsorption transmission FTIR experiments

Surface acidity of the catalyst materials was analyzed by FTIR spectroscopy of adsorbed ammonia using a Tensor 27 spectrometer (Bruker) equipped with a heatable and evacuable IR reaction cell with CaF₂ windows, which was connected to a gas dosing and evacuation system. For each experiment, 50 mg of catalysts were pressed into self-supporting wafers with a diameter of 20 mm, which were first evacuated and then pretreated either in synthetic air or hydrogen (50 ml/min) at 325 °C for 120 min. After cooling to room temperature, a background spectrum was recorded and ammonia (5 vol.-% in helium) was introduced until saturation of adsorbed ammonia was achieved, followed by evacuation to remove physisorbed ammonia. The desorption of ammonia was followed by heating the sample in vacuum up to 300 °C and recording spectra every $\Delta \theta = 50$ °C. For data analysis, subtracted spectra were used, obtained by the subtraction of a respective background spectrum from the ammonia adsorbate spectra.

Figure SI 26: NH₃-adsoprtion transmission FTIR experiments of MoO₃ after reduction at 325 °C for 2 h in 100 % H₂.

Figure SI 27: NH₃-adsoprtion transmission FTIR experiments of MoO_3 after calcination at 325 °C for 2 h in 100 % syn. air.

Figure SI 28: NH₃-adsoprtion transmission FTIR experiments of NiMoO₄ after reduction at 325 °C for 2 h in 100 % H_2 .

Figure SI 29: NH₃-adsoprtion transmission FTIR experiments of NiMoO₄ after calcination at 325 °C for 2 h in 100 % syn. air.

SI-K: In-situ XRD experiments

Figure SI 30: In-situ XRD of $MoO_xC_yH_z$ formation from MoO_3 in H_2 :CH₄ (9:1) at 325 °C shown as a) waterfall plot and b) contour plot.

Figure SI 31: In-situ XRD of $MoO_xC_yH_z$ formation from MoO_3 in H_2 :CH₄ (9:1) at 325 °C. Fitting results for $MoO_xC_yH_z$ and MoO_2 at 310 min.

Figure SI 32: In-situ XRD of $MoO_xC_xH_z$ formation from MoO_3 in H_2 : CH₄ (1:1) at 325 °C shown as a) waterfall plot and b) contour plot.

Figure SI 33: In-situ XRD of $MoO_xC_xH_z$ formation from MoO_3 in H_2 : CH₄ (1:9) at 325 °C shown as a) waterfall plot and b) contour plot.

Figure SI 34: In-situ XRD reduction of NiMoO₄ in 100 % H_2 at 325 °C for 515 min.

Figure SI 35: In-situ XRD of NiMoO₄ in H_2/CH_4 (9:1) at 325 °C for 1385 min.

Figure SI 36: In-situ XRD measurement of Ni(5)MoO₃ heated up to 325 °C in He and switch to H₂ for 125 min followed by flushing with He and switch to CH_4 for 240 min. Afterwards, the sample was flushed again with He and treated for 160 min with H₂. Shown as a) waterfall plot and b) contour plot.

Figure SI 37: In-situ XRD measurement of Ni(5)MoO₃ in H_2/C_3H_6 (9:1) at 325 °C for 492 min shown as a) waterfall plot and b) contour plot.

Figure SI 38: Two layered system with NiO and MoO_3 layer in H_2/C_3H_6 (9:1) at 325 °C for 542 min shown as a) waterfall plot and b) contour plot.

Figure SI 39: Physical mixture of NiO/MoO₃ in $H_2:C_3H_6$ (9:1) at 325 °C for 542 min shown as a) waterfall plot and b) contour plot.