Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Engineering of halohydrin dehalogenase for the regio- and stereoselective synthesis of (S)-4-aryl-2oxazolidinones

Authors: Jinsong Song^{a,b}, Chuanhua Zhou^c,Xi Chen^b, Feng Xue^{a*}, Qiaqing Wu^{b*}, and Dunming Zhu^b ^a School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China

^b National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences,
32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China

° Tianjin Changlu Haijing Group Co., Ltd. No. 1088, Yingkou Road, Tanggu, Binhai New Area, Tianjin, 300450, China

*Corresponding author:

Feng Xue E-mail address: xuef2020@njnu.edu.cn; Tel.:+86-25-58889625; Fax: +86-25-58889625 Qiaqing Wu E-mail address: wu_qq@tib.cas.cn; Tel.:+86-022-84861963;

Fax: +86-022-84861996

Preparation of chemicals

Sheme 1. Methods for the synthesis of 1c-1e, 1g, 1h and 1j.

The substrates styrene oxide derivatives **1c-1e**, **1g**, **1h** and **1j** were prepared from commercially available substituted styrene via reaction with *meta*-chloroperoxybenzoic acid (*m*-CPBA)¹. $R \stackrel{O}{=} Br \quad NaBH_4 \qquad R \stackrel{O}{=} R \stackrel{K_2CO_3}{=} R \stackrel{O}{=} R \stackrel{O}{=} R$

Sheme 2. Methods for the synthesis of 1b, 1f, 1i, 1k and 1l.

The substrates **1b**, **1f**, **1i**, **1k** and **1l** were prepared from the corresponding substituted 2-bromo-1phenylethan-1-one by two-step reactions².

Sheme 3. Methods for the synthesis of (R/S)-2a-2l.

Racemic **2a-21** were synthesized from epoxides **1a-11** using *Ic*HheG. The reaction system consisted of 40 mL Tris-SO₄ buffer (50 mM, pH 7.5), 50 g/L *E. coli* (*Ic*HheG), 50 mM substrate, 75 mM NaOCN and 2.5% DMSO as a co-solvent. The bacteria were re-suspended, mixed and reacted at 200 rpm at 30 $^{\circ}$ C for 6 h, and the reaction was terminated by adding the same amount of petroleum ether (3×40 mL). The remaining aqueous phase was extracted three times with the same volume of ethyl acetate. After the organic phase was combined, it was cleaned three times with saturated salt water and deionized water respectively. The organic phase was dried by anhydrous Na₂SO₄, and then concentrated to obtain oxazolidinone. The crude products were purified by preparative TLC with the spreading solvent (n-hexane/ethyl acetate 1:1). These purified racemic compounds were identified by NMR analysis.

General procedure for the Synthesis of chiral oxazolidinones by enzymatic kinetic resolution

The reaction system consisted of 40 mL Tris-SO₄ buffer (50 mM, pH 7.5), 50 g/L *E. coli* (*Ic*HheG-I104F/N196W), 15-50 mM substrate, 1.5 eq NaOCN and 2.5% DMSO as a co-solvent. The wet cells with HHDHs were re-suspended, mixed and reacted at 200 rpm at 30 °C for 6 h, and the reaction was extracted by petroleum ether (3×40 mL). Combine organic phase and dry with anhydrous sodium sulfate. The chiral epoxide (*S*)-1a-11 was obtained by evaporating under reduced pressure and confirmed by GC analysis.

The remaining aqueous phase was extracted three times with the same volume of ethyl acetate. The combined organic phase was washed with saturated salt water 3 times and deionized water 3 times. The organic layer was dried with anhydrous sodium sulfate and concentrated under reduced pressure to obtain chiral oxazolidinones (*S*)-2a-2l. The crude products were purified by preparative TLC with the spreading solvent (n-hexane/ethyl acetate 1:1). Chiral oxazolidinones were identified by NMR and HPLC analysis.

(S)-4-phenyloxazolidin-2-one (2a)

White solid, 136 mg, 42% yield, 96% *ee*; Chiralpak IC, *n*-hexane/*i*-PrOH=80/20, flow rate 1 mL/min, λ =210 nm, t(*S*)-**2a**=27.3 min, t(*R*)-**2a** =40.5 min.¹H NMR (400MHz, CDCl₃) δ = 7.45 - 7.22 (m, 5H), 6.42 (br. s., 1H), 4.95 (t, *J* = 7.7 Hz, 1H), 4.72 (t, *J* = 8.6 Hz, 1H), 4.16 (t, *J* = 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.93, 139.46, 129.13, 128.73, 125.97, 72.49, 56.32.

(S)-4-(2-tolyl)oxazolidin-2-one (2b)

White solid, 99 mg, 28% yield, 81% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2b**= 67.2 min, t(*R*)-**2b** = 44.5 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.49 - 7.39$ (m, 1H), 7.34 - 7.11 (m, 3H), 6.27 - 6.09 (m, 1H), 5.27 - 5.17 (m, 1H), 4.78 (t, *J* = 8.6 Hz, 1H), 4.10 (t, *J* = 7.7 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.96, 137.46, 134.56, 130.87, 128.28, 126.92, 124.67, 71.55, 53.11, 19.01.

(S)-4-(3-tolyl)oxazolidin-2-one (2c)

White solid, 128 mg, 36% yield, 58% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2**c= 89.9 min, t(*R*)-**2**c= 86.4 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.27$ (d, *J* = 7.8 Hz, 1H), 7.21 - 7.06 (m, 3H), 5.99 - 5.82 (m, 1H), 4.96 - 4.86 (m, 1H), 4.72 (t, *J* = 8.7 Hz, 1H), 4.18 (dd, *J* = 7.2, 8.2 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.63, 139.39, 139.06, 129.55, 129.06, 126.62, 123.09, 72.54, 56.30, 21.37.

(S)-4-(4-tolyl)oxazolidin-2-one (2d)

White solid, 188 mg, 53% yield, 66% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2d**= 60.1 min, t(*R*)-**2d**= 46.4 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.21$ (d, *J* = 1.7 Hz, 4H), 6.11 - 6.03 (m, 1H), 4.96 - 4.85 (m, 1H), 4.70 (s, 1H), 4.16 (d, *J* = 7.3 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.75, 138.66, 136.41, 129.78, 125.95, 72.61, 56.14, 21.09.

(S)-4-(2-fluorophenyl)oxazolidin-2-one (2e)

White solid, 46 mg, 47% yield, 97% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-**2e**= 36.7 min, t(R)-**2e**= 47.5 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.44 - 7.33$

(m, 1H), 7.26 (s, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 6.04 - 5.87 (m, 1H), 4.96 (d, J = 7.6 Hz, 1H), 4.75 (t, J = 8.7 Hz, 1H), 4.17 (s, 1H). ¹³C NMR (100 MHz, CDCl3) δ 164.41, 161.95 , 159.43 , 142.04, 141.97, 130.99, 130.92, 121.60, 115.98, 115.77, 113.16, 112.94, 72.23, 55.87.

(S)-4-(4-fluorophenyl)oxazolidin-2-one (2f)

White solid, 161 mg, 45% yield, 99% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, λ = 220 nm, t(*S*)-**2f**= 39.4 min, t(*R*)-**2f**= 45.7 min. ¹H NMR (400MHz, CDCl₃) δ = 7.38 - 7.22 (m, 2H), 7.10 (t, *J* = 8.4 Hz, 2H), 5.99 (br. s., 1H), 4.96 (t, *J* = 7.7 Hz, 1H), 4.73 (t, *J* = 8.7 Hz, 1H), 4.22 - 4.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.09, 161.62, 159.54, 135.18, 135.18, 127.87, 127.79, 116.30, 116.09, 72.50, 55.76.

(S)-4-(2-chlorophenyl)oxazolidin-2-one (2g)

White solid, 56 mg, 14% yield, 98% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2g**= 42.5 min, t(*R*)-**2g**= 60.4 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.50$ (s, 1H), 7.45 - 7.25 (m, 3H), 6.52 - 6.37 (m, 1H), 5.38 (br. s., 1H), 4.90 (s, 1H), 4.15 (dd, *J* = 6.4, 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.99, 137.25, 132.05, 129.90, 127.63, 126.12, 71.29, 53.22.

(S)-4-(3-chlorophenyl)oxazolidin-2-one (2h)

White solid, 169 mg, 43% yield, 98% ee; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-**2h**= 104.8 min, t(R)-**2h**= 120.7 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.42$ - 7.20 (m, 4H), 5.94 (br. s., 1H), 5.60 (t, J = 8.1 Hz, 1H), 4.01 (t, J = 8.7 Hz, 1H), 3.52 (t, J = 8.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.40, 140.44, 134.92, 130.27, 129.07, 125.76, 123.65, 48.13.

(S)-4-(4-chlorophenyl)oxazolidin-2-one (2i)

White solid, 162 mg, 41% yield, 98% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2i**= 53.2 min, t(*R*)-**2i**= 58.2 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.38$ (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 6.24 (br. s., 1H), 4.95 (s, 1H), 4.79 - 4.68 (m, 1H), 4.20 - 4.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.68, 137.94, 134.69, 129.39, 127.40, 72.33, 55.76.

(S)-4-(3-bromophenyl)oxazolidin-2-one (2j)

White solid, 115 mg, 24% yield, 98% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2j**= 64.1min, t(*R*)-**2j**= 59.6 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.48$ (s, 2H), 7.27 (d, *J* = 4.4 Hz, 2H), 6.65 - 6.51 (m, 1H), 4.93 (t, *J* = 7.8 Hz, 1H), 4.72 (t, *J* = 8.8 Hz, 1H), 4.15 (dd, *J* = 7.1, 8.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.83, 141.84, 131.86, 130.76, 129.10, 124.59, 123.17, 123.15, 72.19, 55.73.

(S)-4-(4-bromophenyl)oxazolidin-2-one (2k)

White solid, 192 mg, 40% yield, 98% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(*S*)-**2**k= 61.1min, t(*R*)-**2**k= 69.4 min. ¹H NMR (400MHz, CDCl₃) $\delta = 7.53$ (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.29 (br. s., 1H), 4.93 (t, J = 7.8 Hz, 1H), 4.73 (t, J = 8.7 Hz, 1H), 4.13 (t, J = 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.61, 138.45, 132.36, 127.71, 122.81, 72.25, 55.82.

(S)-4-(3,4-dichlorophenyl)oxazolidin-2-one (2l)

White solid, 111 mg, 24% yield, 97% *ee*; Chiralpak OD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 0.4 mL/min, λ = 220 nm, t(*S*)-**2l**= 36.9min, t(*R*)-**2l**= 44.8 min. ¹H NMR (400MHz, CDCl₃) δ = 7.53 - 7.41 (m, 2H), 7.19 (dd, *J* = 1.5, 8.1 Hz, 1H), 6.69 (br. s., 1H), 4.94 (t, *J* = 7.7 Hz, 1H), 4.74 (t, *J* = 8.8 Hz, 1H), 4.13 (dd, *J* = 6.8, 8.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.78, 137.74, 133.39, 132.94, 131.23, 128.09, 125.24, 72.05, 55.35.

Target sites	Oligonucleotide sequences		
Y18A	GCAACCGGTGCAGTTGGTCCGGCAC		
18R	CCAGGCATGCACTATCCAGGCGACC		
V100A	GTGCATGCCTGGCAACCGGCCTGAT		
T101A	GCATGCCTGGTGGCAGGCCTGATTG		
L103A	GCCTGGTGACCGGCGCAATTGTTAC		
I104A	GGTGACCGGCCTGGCAGTTACCGGCAAA		
100-104R	CCACTGCGCGAACAATACCATTGGC		
T151A	GTGTGTTGTGTTTGCAAGTGCCACCGG		
T154A	GTTTACCAGTGCCGCAGGCGGTCGTC		
151-154R	GGAACCTGGGCTTCAATCATTGCGC		
T195A	GCAATTGGTGCAAATTATATGGATTTCCCG		
N196A	GCAATTGGTACCGCATATATGGATTTCCCG		
Y197A	GCAATTGGTACCAATGCAATGGATTTCCCG		
F200A	CCAATTATATGGATGCACCGGGCTTTCT		
195-200R	GAAAACGATTACTACCATCCAGCAGGCC		
L103G/I104A	GGTGACCGGCGGTGCAGTTACCGGCAAA		
L103G/I104-R	CCACTGCGCGAACAATACCATTGGC		

Table S1 Oligonucleotide sequences used in this study.

The above primers were used for site-specific mutagenesis. The amino acid at each site mutates into 19 other amino acids, and the corresponding codon preferred by *E. coli* was selected to replace the red-marked codon.

Entry ^a	HHDH	Substrate	Relative activity ^b [%]	Ratio 2a:3a	2a ee ^c [%]
13	Control ^d	SO	<1	ND	ND
2 ³	CsHheA	SO	31	26:74	32 (<i>R</i>)
33	CsHheB	SO	66	12:88	79 (<i>R</i>)
4 ³	GbHheB	SO	49	57:43	69 (<i>R</i>)
5 ³	ArHheC	SO	94	41:59	72 (<i>S</i>)
6 ³	SsHheD	SO	80	95:5	38 (R)
7 ³	<i>Eb</i> HheD	SO	72	96:4	42 (<i>R</i>)
8 ³	<i>Ni</i> HheG	SO	35	97:3	65 (<i>R</i>)
9 ³	AcHheG	SO	57	99:1	34 (<i>S</i>)
10 ³	AbHheG	SO	135	98:2	30 (<i>R</i>)
113	<i>Ic</i> HheG	SO	100	91:9	31 (<i>S</i>)
124	IcHheG ^{ef}	<i>R</i> -SO	ND	ND	>99 (S)
134	IcHheG ^{ef}	S-SO	ND	ND	>99 (<i>R</i>)

 Table S2 Summary of HHDHs catalyzed SO for the synthesis of oxazolidinone from the recent literature^{3,4}.

^{*a*} Reaction conditions: 1 mL Tris-SO₄ buffer (50 mM, pH 7.5), 1a (10 mM), 1% DMSO, NaOCN (15 mM), wet cells of *E. coli* (HHDH) (25 g/L), 30 °C. ^{*b*} The amount of product performed at 2.5 h was used to indicate the activity. As the positive control, the activity of *Ic*HheG was defined as 100% and the selectivity data are from the references. ^{*c*} Absolute configurations were determined by comparison with references. ^{*d*} Host *E. coli* BL21(DE3) cells without the HHDH gene were used. ^{*e*} Configurations were determined by chiral HPLC. ^{*f*} Reaction conditions: PB buffer (50 mM, pH 7.5) 30 mL, cell density 15 g cdw/L, epoxides conc. 15 mM, NaOCN conc. 45 mM, reaction temperature 30 °C, reaction time 12 h. ND=not determined. All reactions were performed in triplicate.

Mutant	Relative activity (%)	2a:3a	2a ee(%)
WT	100 ^ь	93:7	33 <i>(S</i>)
Y18A	0	-	-
L103A	133	99:1	50 (<i>S</i>)
I104A	0	-	-
T151A	0	-	-
A153L	0	-	-
T154A	0	-	-
T195A	6	ND ^c	ND
N196A	43	95:5	34 (<i>R</i>)
Y197A	0	-	-
F200A	0	-	-

Table S3 Alanine-scanning mutagenesis of wild-type IcHheG with 1a.^a

^{*a*} Reactions were carried out in 1 mL Tris-SO₄ buffer (50 mM, pH 7.5) containing *E. coli* (HHDH) wet cells (50 g/L), 1% v/v DMSO, **1a** (10 mM) and NaOCN (15 mM) at 30 °C, 200 rpm for 3 h. ^bThe activity of wild type *Ic*HheG towards **1a** was defined as 100%. ^cND means not detected.

Mutant	Relative activity (%)	Ratio 2a:3a	2a <i>ee</i> (%)
Y18H	82	>99:1	82 (<i>S</i>)
Y18F	122	>99:1	65 (<i>S</i>)
L103G	99	>99:1	83 (<i>S</i>)
L103Q	130	>99:1	39 (<i>S</i>)
L103E	121	>99:1	39 (<i>S</i>)
L103T	155	98:2	32 (<i>S</i>)
L103W	150	96:4	48 (<i>S</i>)
L103F	67	98:2	71 (<i>S</i>)
L103V	166	97:3	24 (<i>S</i>)
L103Y	148	99:1	40 (<i>S</i>)
L103D	155	98:2	34 (<i>S</i>)
L103R	127	>99:1	51 (<i>S</i>)
L103N	129	98:2	56 (<i>S</i>)
L103M	150	98:2	42 (<i>S</i>)
L103K	137	97:3	50 (<i>S</i>)
L103I	125	>99:1	34 (<i>S</i>)
L103S	133	>99:1	49 (<i>S</i>)
L103H	134	>99:1	44 (<i>S</i>)
I104N	70	99:1	95 (<i>S</i>)
I104Y	102	99:1	82 (<i>S</i>)
I104T	28	98:2	84 (<i>S</i>)
I104H	105	97:3	75 (<i>S</i>)
I104L	102	99:1	69 (<i>S</i>)
I104C	100	99:1	65 (<i>S</i>)
I104Q	70	99:1	83 (<i>S</i>)
I104M	121	>99:1	50 (<i>S</i>)
I104S	44	96:4	91 (<i>S</i>)
I104E	35	99:1	83(<i>S</i>)
I104F	80	97:3	81 (<i>S</i>)
N196G	102	95:5	30 (<i>R</i>)
N196C	126	99:1	36 (<i>S</i>)
N196Y	7	ND	ND
N196Q	2	ND	ND
N196W	82	>99:1	75 (<i>S</i>)
N196L	116	98:2	22 (<i>S</i>)
N196H	67	>99:1	60 (<i>S</i>)
N196F	48	>99:1	67 (<i>S</i>)
N196M	15	>99:1	22 (<i>S</i>)
N196S	4	ND	ND

Table S4 Relative activity, regio- and stereoselectivity of mutants towards 1a by using resting cells.^a

^{*a*} Reactions were carried out in 1 mL Tris-SO₄ buffer (50 mM, pH 7.5) containing *E. coli* (HHDH) wet cells (50 g/L), 1% v/v DMSO, **1a** (10 mM) and NaOCN (15 mM) at 30 °C, 200 rpm for 3 h.

Table S5 Relative activity, regio- and stereoselectivity of multisite variants toward styrene oxide.^a

IcHheG mutants	Relative activity(%)	2a:3a	2a ee (%)
WT	100	93:7	33 <i>(S</i>)
Y18F/L103K	99	>99:1	73 (<i>S</i>)
Y18F/L103F	98	>99:1	60 (<i>S</i>)
Y18F/L103H	106	>99:1	64 (<i>S</i>)
Y18F/L103D	109	>99:1	64 (<i>S</i>)
Y18F/L103R	82	>99:1	76 (<i>S</i>)
Y18F/L103E	112	>99:1	52 (S)
Y18F/L103M	97	>99:1	72 (<i>S</i>)
Y18F/L103Q	96	>99:1	72 (<i>S</i>)
Y18F/L103N	100	>99:1	61 (<i>S</i>)
Y18F/L103C	101	>99:1	72 (<i>S</i>)
Y18F/L103G	97	>99:1	75 (<i>S</i>)
Y18W/N196W	22	99:1	95 (<i>S</i>)
Y18H/N196W	34	98:2	32 (<i>R</i>)
Y18M/N196W	4	ND	ND
Y18N/N196W	26	97:3	96 (<i>S</i>)
Y18H/N196F	23	96:4	12 (S)
Y18H/N196L	13	94:6	15 (S)
Y18H/N196M	55	>99:1	37 (S)
Y18H/N196G	31	95:5	67 (<i>R</i>)
L103G/I104N	32	95:5	91 (<i>S</i>)
L103G/I104T	61	95:5	88 (S)
L103G/I104F	76	98:2	95 (<i>S</i>)
L103G/I104Y	85	98:2	77 (<i>S</i>)
L103G/I104M	125	96:4	62 (<i>S</i>)
L103G/I104R	50	93:7	95 (<i>S</i>)
L103G/I104E	25	90:10	87 (<i>S</i>)
L103G/I104G	23	93:7	89 (<i>S</i>)
L103G/I104K	35	92:8	89 (<i>S</i>)
L103G/T195S	42	85:15	71 (<i>S</i>)
L103G/T195M	30	99:1	94 (<i>S</i>)
L103G/T195W	77	98:2	80 (<i>S</i>)
L103G/N196C	204	98:2	49 (<i>S</i>)
L103G/N196F	54	>99:1	76 (<i>S</i>)
L103G/N196H	98	>99:1	79 (<i>S</i>)
L103G/N196L	150	97:3	49 (<i>S</i>)
L103G/N196M	165	97:3	27 (<i>S</i>)
L103G/N196Q	42	95:5	89 (<i>S</i>)
L103G/N196Y	28	91:9	79 (<i>S</i>)
L103C/N196W	136	97:3	79 (<i>S</i>)
L103D/N196W	187	93:7	66 (<i>S</i>)
L103E/N196W	154	97:3	57 (S)

L103H/N196W	145	93:7	73 (<i>S</i>)
L103M/N196W	135	96:4	79 (<i>S</i>)
L103N/N196W	143	>99:1	76 (<i>S</i>)
L103Q/N196W	156	97:3	76 (<i>S</i>)
L103S/N196W	149	>99:1	77 (<i>S</i>)
L103T/N196W	146	>99:1	70 (<i>S</i>)
L103Y/N196W	112	>99:1	82 (<i>S</i>)
L103A/N196W	188	97:3	57 (S)
L103G/N196W	84	98:2	90 (<i>S</i>)
I104H/N196W	50	95:5	97 (<i>S</i>)
I104Y/N196W	72	97:3	96 (<i>S</i>)
I104W/N196W	87	99:1	91 (<i>S</i>)
I104V/N196W	92	99:1	85 (<i>S</i>)
I104F/N196W	73	>99:1	98 (S)
I104C/N196W	43	99:1	98 (S)
I104G/N196W	56	98:2	95 (S)

^{*a*} Reactions were carried out in 1 mL Tris-SO₄ buffer (50 mM, pH 7.5) containing *E. coli* (HHDH) wet cells (50 g/L), 1% v/v DMSO, **1a** (10 mM) and NaOCN (15 mM) at 30 °C, 200 rpm for 3 h.

Fig. S1 Epoxide used as substrates in this study.

		32 34		- 40 - 40
ID#	Ret.Time	Area	Height	Area %
1	27.611	5253.9	143.7	53.827
2	40.449	4506.8	83.9	46.173
				40.507
 	Pat Tima	32 34	Hoight	40 min
1D#	Ket. I lille	Alta	rieigin	Alca 70
1	27.336	32612.6	830.7	97.891
2	40.507	702.7	14.1	2.109

We established a large-scale biological reaction with epoxyethane 1a (1.2g) as the substrate. The reaction was continued for 6 hours with a substrate concentration of 50mM. After treatment, the final yield was 38%(0.61g).

The *ee* was determined by chiral HPLC (Chiralpak IC, *n*-hexane/*i*-PrOH=80/20, flow rate 1 mL/min, λ =210 nm, t(S)-2a=27.3 min, t(R)-2a =40.5 min).

Fig. S2 HPLC chromatograms of *rac*-2a synthesized by *Ic*HheG, (S)-2a synthesized by mutant I104F/N196W.

70 70 60 90 90 90 90 90 90 90 90 90 9				
ID#	Ret.Time	Area	Height	Area %
1	44.452	797.7	10.9	20.492
2	67.83	3095.3	28	79.508
$H_3 HN \leftarrow H_3 HN \leftarrow H$				75 mit
ID#	Ret.Time	Area	Height	Area %
1	44.46	1309.9	17.2	9.251
2	67.163	12849.6	106.2	90.749

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-**2b**= 67.2 min, t(R)-**2b** = 44.5 min).

Fig. S3 HPLC chromatograms of *rac*-2b synthesized by *Ic*HheG, (S)-2b synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2c= 89.9 min, t(R)-2c= 86.4 min).

Fig. S4 HPLC chromatograms of *rac*-2c synthesized by *Ic*HheG, (S)-2c synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2d= 60.1 min, t(R)-2d= 46.4 min).

Fig. S5 HPLC chromatograms of *rac*-2d synthesized by *Ic*HheG, (S)-2d synthesized by mutant I104F/N196W.

		42	F HN O	27 L SQ 45 min
ID#	Ret.Time	Area	Height	Area %
1	36.803	716.9	11.1	62.358
2	46.742	432.7	5.8	37.642
50 - 40 - 30 - 20 - 10 -			F HN O	47.465 -
36	38 40	42	44 46	48 min
ID#	Ret.Time	Area	Height	Area %
1	36.739	2085.7	31.8	98.698
2	47.457	27.5	3.8E-1	1.302

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2e= 36.7 min, t(R)-2e= 47.5 min).

Fig. S6 HPLC chromatograms of *rac*-2e synthesized by *Ic*HheG, (S)-2e synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-**2f**= 39.4 min, t(R)-**2f**= 45.7 min).

Fig. S7 HPLC chromatograms of *rac*-2f synthesized by *Ic*HheG, (S)-2f synthesized by mutant 1104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2g= 42.5 min, t(R)-2g= 60.4 min).

Fig. S8 HPLC chromatograms of *rac*-2g synthesized by *Ic*HheG, (S)-2g synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-**2h**= 104.8 min, t(R)-**2h**= 120.7 min).

Fig. S9 HPLC chromatograms of *rac*-2h synthesized by *Ic*HheG, (S)-2h synthesized by mutant I104F/N196W.

	HN O BA			
ID#	Ret.Time	Area	Height	Area %
1	53.185	7820.1	87	47.588
2	57.578	8613	86	52.412
ID#	Ret.Time	Area	Height	Area %
1	53.227	7531.5	83.5	98.822
2	58.207	89.8	1.1	1.178

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2i= 53.2 min, t(R)-2i= 58.2 min).

Fig. S10 HPLC chromatograms of *rac*-2i synthesized by *Ic*HheG, (S)-2i synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2j= 64.1min, t(R)-2j= 59.6 min).

Fig. S11 HPLC chromatograms of *rac*-2j synthesized by *Ic*HheG, (S)-2j synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.6 mL/min, $\lambda = 220$ nm, t(S)-2k = 61.1min, t(R)-2k = 69.4 min).

Fig. S12 HPLC chromatograms of *rac*-2k synthesized by *Ic*HheG, (S)-2k synthesized by mutant I104F/N196W.

The *ee* was determined by chiral HPLC (Chiralpak OD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 0.4 mL/min, $\lambda = 220$ nm, t(S)-21 = 36.9min, t(R)-21 = 44.8 min).

Fig. S13 HPLC chromatograms of *rac*-21 synthesized by *Ic*HheG, (S)-21 synthesized by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 5 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S14 Chiral GC chromatograms of *rac***-1a**; Chiral GC chromatogram analysis of biotransformation of *rac***-1a** by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 3 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S15 Chiral GC chromatograms of *rac***-1b**; Chiral GC chromatogram analysis of biotransformation of *rac***-1b** by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 1 °C/min to 160 °C, and hold at 20 °C/min increase to 220 °C for 8 minutes.

Fig. S16 Chiral GC chromatograms of *rac***-1c**; Chiral GC chromatogram analysis of biotransformation of *rac***-1c** by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 3 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S17 Chiral GC chromatograms of *rac***-1d**; Chiral GC chromatogram analysis of biotransformation of *rac***-1d** by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 0.5 °C/min to 115 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S18 Chiral GC chromatograms of *rac*-1e; Chiral GC chromatogram analysis of biotransformation of *rac*-1e by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 5 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S19 Chiral GC chromatograms of *rac***-1f**; Chiral GC chromatogram analysis of biotransformation of *rac***-1f** by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 1 °C/min to 160 °C, and hold at 20 °C/min increase to 220 °C for 8 minutes.

Fig. S20 Chiral GC chromatograms of *rac*-1g; Chiral GC chromatogram analysis of biotransformation of *rac*-1g by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 5 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S21 Chiral GC chromatograms of *rac***-1h**; Chiral GC chromatogram analysis of biotransformation of *rac***-1h** by mutant I104F/N196W.

The detection method is as follows: start at 100°C, increase at 2°C/min to 180 °C, and hold at 20 °C/min increase to 220 °C for 8 minutes.

Fig. S22 Chiral GC chromatograms of *rac***-1i**; Chiral GC chromatogram analysis of biotransformation of *rac***-1i** by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 1 °C/min to 160 °C, and hold at 20 °C/min increase to 220 °C for 8 minutes.

Fig. S23 Chiral GC chromatograms of *rac*-1j; Chiral GC chromatogram analysis of biotransformation of *rac*-1j by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 5 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S24 Chiral GC chromatograms of *rac*-1k; Chiral GC chromatogram analysis of biotransformation of *rac*-1k by mutant I104F/N196W.

The detection method is as follows: start at 100 °C, increase at 3 °C/min to 180 °C, and hold at 10 °C/min increase to 220 °C for 8 minutes.

Fig. S25 Chiral GC chromatograms of *rac***-11**; Chiral GC chromatogram analysis of biotransformation of *rac***-11** by mutant I104F/N196W.

Fig. S26 Docking analysis of *Ic*HheG with 1a.

Fig. S27 SDS-PAGE analysis of overexpression of the recombinant *E. coli* (*Ic*HheG) and its mutants. Lane M: protein marker; Lane 1: the supernatant of *E. coli* (*Ic*HheG); Lane 2: the deposit of *E. coli* (*Ic*HheG); Lane 3: the supernatant of *E. coli* (N196W); Lane 4: the deposit of *E. coli* (N196W); Lane 5: the supernatant of *E. coli* (L103G); Lane 6: the deposit of *E. coli* (L103G); Lane 7: the supernatant of *E. coli* (I104F/N196W); Lane 8: the deposit of *E. coli* (I104F/N196W).

Fig. S28 SDS-PAGE analysis of the purification of *Ic*HheG and mutant I104F/N196W. Lane M: protein marker; Lane 1: purified mutant I104F/N196W; Lane 2: purified *Ic*HheG.

Fig. S29: a: Structural comparison of *Ab*HheG (sand) with *Ic*HheG (deepblue). b: Structural comparison of HheA (green) with *Ic*HheG (deep blue). c: Protein sequence alignment of *Ic*HheG, *Ab*HheG and HheA. Halide binding sites are marked with black box. The catalytic triad are marked by blue triangles. Residues 18 (*Ic*HheG), 15 (*Ab*HheG) and 12 (HheA) are marked by red triangle. Residues 104 (*Ic*HheG), 90 (*Ab*HheG) and 76 (HheA) are marked by red triangle. Residues 196 (*Ic*HheG), 182 (*Ab*HheG) and 178 (HheA) are marked by red triangle.

Fig. S30 Structural comparison of WT *Ic*HheG (cyan) with mutant I104F/N196W (grey). Halide binding loop in WT *Ic*HheG (Residues 195-201) is marked with deepblue. Halide binding loop in mutant I104F/N196W (Residues 195-201) is marked with yellow.

Fig. S31 NMR spectra copies of (S)-4-phenyloxazolidin-2-one (2a).

Fig. S33 NMR spectra copies of (S)-4-(p-tolyl)oxazolidin-2-one (2c).

Fig. S34 NMR spectra copies of (S)-4-(p-tolyl)oxazolidin-2-one (2d).

Fig. S35 NMR spectra copies of (S)-4-(2-fluorophenyl)oxazolidin-2-one (2e).

Fig. S36 NMR spectra copies of (S)-4-(4-fluorophenyl)oxazolidin-2-one (2f).

Fig. S37 NMR spectra copies of (S)-4-(2-chlorophenyl)oxazolidin-2-one (2g).

Fig. S38 NMR spectra copies of (S)-4-(3-chlorophenyl)oxazolidin-2-one (2h).

Fig. S39 NMR spectra copies of (S)-4-(4-chlorophenyl)oxazolidin-2-one (2i).

Fig. S40 NMR spectra copies of (S)-4-(3-bromophenyl)oxazolidin-2-one (2j).

Fig. S41 NMR spectra copies of (S)-4-(4-bromophenyl)oxazolidin-2-one (2k).

Fig. S42 NMR spectra copies of (S)-4-(3,4-dichlorophenyl)oxazolidin-2-one (2l).

References

- (1) O. Mazimba, R. R. Majinda and I. B. Masesane, B. Chem. Soc. Ethiopia., 2011, 25, 299-304.
- (2) (2) F. L. Li, Y. Y. Qiu, Y. C. Zheng, F. F. Chen, X. D. Kong, J. H. Xu and H. L. Yu, Adv. Synth.
- Catal., 2020, 362, 4699-4706.
- (3) C. H. Zhou, X. Chen, T. Lv, X. Han, J. H. Feng, W. D. Liu, Q. Q. Wu and D. M. Zhu, ACS. Catal.,
- 2023, **13**, 4768-4777.
- (4) N. Wan, J. Tian, X. Zhou, H. Wang, B. Cui, W. Han and Y. Chen, *Adv. Synth. Catal.*, 2019, 361, 4651-4655.