Supporting Information

Engineering of halohydrin dehalogenase for the regio- and stereoselective synthesis of (S)-4-aryl-2oxazolidinones

Authors: Jinsong Song ${ }^{\text {ab, }}$, Chuanhua Zhou ${ }^{\mathrm{c}}$,Xi Chen ${ }^{\text {b }}$, Feng Xue ${ }^{\mathrm{a}^{*}}$, Qiaqing Wu ${ }^{\mathrm{b}^{*}}$, and Dunming Zhu ${ }^{\text {b }}$ ${ }^{\text {a }}$ School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China
${ }^{\mathrm{b}}$ National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
${ }^{\text {c }}$ Tianjin Changlu Haijing Group Co., Ltd. No. 1088, Yingkou Road, Tanggu, Binhai New Area, Tianjin, 300450, China

*Corresponding author:

Feng Xue
E-mail address: xuef2020@njnu.edu.cn;
Tel.:+86-25-58889625;
Fax: +86-25-58889625
Qiaqing Wu
E-mail address: wu_qq@tib.cas.cn;
Tel.:+86-022-84861963;
Fax: +86-022-84861996

Preparation of chemicals

Sheme 1. Methods for the synthesis of $\mathbf{1 c} \mathbf{- 1 e}, \mathbf{1 g}, \mathbf{1 h}$ and $\mathbf{1 j}$.
The substrates styrene oxide derivatives $\mathbf{1 c} \mathbf{-} \mathbf{e}, \mathbf{1 g}, \mathbf{1 h}$ and $\mathbf{1} \mathbf{j}$ were prepared from commercially available substituted styrene via reaction with meta-chloroperoxybenzoic acid (m-CPBA) ${ }^{1}$.

Sheme 2. Methods for the synthesis of $\mathbf{1 b}, \mathbf{1 f}, \mathbf{1 i}, \mathbf{1 k}$ and $\mathbf{1 1}$.
The substrates $\mathbf{1 b}, \mathbf{1 f}, \mathbf{1 i}, \mathbf{1 k}$ and $\mathbf{1 l}$ were prepared from the corresponding substituted 2-bromo-1-phenylethan-1-one by two-step reactions ${ }^{2}$.

Sheme 3. Methods for the synthesis of (R / S)-2a-2l.
Racemic 2a-2l were synthesized from epoxides 1a-11 using $I c H h e G$. The reaction system consisted of 40 mL Tris- SO_{4} buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$), $50 \mathrm{~g} / \mathrm{L}$ E. coli (IcHheG), 50 mM substrate, 75 mM NaOCN and 2.5% DMSO as a co-solvent. The bacteria were re-suspended, mixed and reacted at 200 rpm at 30 ${ }^{\circ} \mathrm{C}$ for 6 h , and the reaction was terminated by adding the same amount of petroleum ether $(3 \times 40 \mathrm{~mL})$. The remaining aqueous phase was extracted three times with the same volume of ethyl acetate. After the organic phase was combined, it was cleaned three times with saturated salt water and deionized water respectively. The organic phase was dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated to obtain oxazolidinone. The crude products were purified by preparative TLC with the spreading solvent (nhexane/ethyl acetate 1:1). These purified racemic compounds were identified by NMR analysis.

General procedure for the Synthesis of chiral oxazolidinones by enzymatic kinetic resolution
The reaction system consisted of 40 mL Tris- SO_{4} buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$), $50 \mathrm{~g} / \mathrm{L}$ E. coli (IcHheGI104F/N196W), $15-50 \mathrm{mM}$ substrate, 1.5 eq NaOCN and 2.5% DMSO as a co-solvent. The wet cells with HHDHs were re-suspended, mixed and reacted at 200 rpm at $30^{\circ} \mathrm{C}$ for 6 h , and the reaction was extracted by petroleum ether $(3 \times 40 \mathrm{~mL})$. Combine organic phase and dry with anhydrous sodium sulfate. The chiral epoxide (S)-1a-11 was obtained by evaporating under reduced pressure and confirmed by GC analysis.

The remaining aqueous phase was extracted three times with the same volume of ethyl acetate. The combined organic phase was washed with saturated salt water 3 times and deionized water 3 times. The organic layer was dried with anhydrous sodium sulfate and concentrated under reduced pressure to obtain chiral oxazolidinones (S)-2a-2l. The crude products were purified by preparative TLC with the spreading solvent (n-hexane/ethyl acetate 1:1). Chiral oxazolidinones were identified by NMR and HPLC analysis.

(S)-4-phenyloxazolidin-2-one (2a)

White solid, $136 \mathrm{mg}, 42 \%$ yield, $96 \% e e$; Chiralpak IC, n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=210 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 a}=27.3 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 a}=40.5 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45-7.22(\mathrm{~m}, 5 \mathrm{H})$, 6.42 (br. s., 1H), $4.95(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.93,139.46,129.13,128.73,125.97,72.49,56.32$.

(S)-4-(2-tolyl)oxazolidin-2-one (2b)

White solid, $99 \mathrm{mg}, 28 \%$ yield, $81 \% \mathrm{ee}$; Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 b}=67.2 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 b}=44.5 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-7.39$ $(\mathrm{m}, 1 \mathrm{H}), 7.34-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.27-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.96,137.46,134.56,130.87,128.28$, 126.92, 124.67, 71.55, 53.11, 19.01 .
(S)-4-(3-tolyl)oxazolidin-2-one (2c)

White solid, $128 \mathrm{mg}, 36 \%$ yield, $58 \% e e$; Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 c}=89.9 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 c}=86.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.27(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.06(\mathrm{~m}, 3 \mathrm{H}), 5.99-5.82(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=7.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.63,139.39,139.06,129.55$, 129.06, 126.62, 123.09, 72.54, 56.30, 21.37.

(S)-4-(4-tolyl)oxazolidin-2-one (2d)

White solid, $188 \mathrm{mg}, 53 \%$ yield, $66 \% e e$; Chiralpak OD-H, n-hexane $/ i$ - $\operatorname{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 d}=60.1 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 d}=46.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.21(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.11-6.03(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.75$, 138.66, 136.41, 129.78, 125.95, 72.61, 56.14, 21.09.

(S)-4-(2-fluorophenyl)oxazolidin-2-one (2e)

White solid, $46 \mathrm{mg}, 47 \%$ yield, $97 \% e e$; Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 e}=36.7 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2} \mathbf{e}=47.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.33$
(m, 1H), $7.26(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.04-5.87(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 164.41,161.95$, $159.43,142.04,141.97,130.99,130.92,121.60,115.98,115.77,113.16,112.94,72.23,55.87$.
(S)-4-(4-fluorophenyl)oxazolidin-2-one (2f)

White solid, $161 \mathrm{mg}, 45 \%$ yield, $99 \% \mathrm{ee}$; Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 f}=39.4 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 f}=45.7 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.22$ (m, 2H), $7.10(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.99$ (br. s., 1 H$), 4.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ - $4.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 164.09,161.62,159.54,135.18,135.18,127.87,127.79$, 116.30, 116.09, 72.50, 55.76.

(S)-4-(2-chlorophenyl)oxazolidin-2-one (2g)

White solid, $56 \mathrm{mg}, 14 \%$ yield, $98 \% \mathrm{ee}$; Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 g}=42.5 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 g}=60.4 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.50(\mathrm{~s}, 1 \mathrm{H})$, 7.45-7.25(m, 3H), 6.52-6.37(m, 1H), 5.38 (br. s., 1 H$), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=6.4,8.6 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.99,137.25,132.05,129.90,127.63,126.12,71.29,53.22$.
(S)-4-(3-chlorophenyl)oxazolidin-2-one (2h)

White solid, $169 \mathrm{mg}, 43 \%$ yield, 98% ee; Chiralpak OD-H, n-hexane $/ i$ - $\operatorname{PrOH}=95 / 5$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 h}=104.8 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 h}=120.7 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-$ $7.20(\mathrm{~m}, 4 \mathrm{H}), 5.94(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 5.60(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.40,140.44,134.92,130.27,129.07,125.76,123.65,48.13$.

(S)-4-(4-chlorophenyl)oxazolidin-2-one (2i)

White solid, $162 \mathrm{mg}, 41 \%$ yield, $98 \% \mathrm{ee}$; Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2}=53.2 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2}=58.2 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.79-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.09(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.68,137.94,134.69,129.39,127.40,72.33,55.76$.
(S)-4-(3-bromophenyl)oxazolidin-2-one (2j)

White solid, $115 \mathrm{mg}, 24 \%$ yield, $98 \% e e$; Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2} \mathbf{j}=64.1 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2} \mathbf{j}=59.6 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.48(\mathrm{~s}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.51(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}$, $J=7.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.83,141.84,131.86,130.76,129.10,124.59$, 123.17, 123.15, 72.19, 55.73.

(S)-4-(4-bromophenyl)oxazolidin-2-one (2k)

White solid, $192 \mathrm{mg}, 40 \%$ yield, $98 \% e e$; Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 k}=61.1 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 k}=69.4 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ (br. s., 1H), 4.93 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.61,138.45,132.36,127.71,122.81,72.25$, 55.82.
(S)-4-(3,4-dichlorophenyl)oxazolidin-2-one (21)

White solid, $111 \mathrm{mg}, 24 \%$ yield, $97 \% e e$; Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate 0.4 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 l}=36.9 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 l}=44.8 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53-7.41$ (m, 2H), 7.19 (dd, $J=1.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (br. s., 1 H), $4.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (t, $J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{dd}, J=6.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.78,137.74,133.39,132.94$, 131.23, 128.09, 125.24, 72.05, 55.35.

Table S1 Oligonucleotide sequences used in this study.

Target sites	Oligonucleotide sequences
Y18A	GCAACCGGTGCAGTTGGTCCGGCAC
18R	CCAGGCATGCACTATCCAGGCGACC
V100A	GTGCATGCCTGGCAACCGGCCTGAT
T101A	GCATGCCTGGTGGCAGGCCTGATTG
L103A	GCCTGGTGACCGGCGCAATTGTTAC
I104A	GGTGACCGGCCTGGCAGTTACCGGCAAA
100-104R	CCACTGCGCGAACAATACCATTGGC
T151A	GTGTGTTGTGTTTGCAAGTGCCACCGG
T154A	GTTTACCAGTGCCGCAGGCGGTCGTC
151-154R	GGAACCTGGGCTTCAATCATTGCGC
T195A	GCAATTGGTGCAAATTATATGGATTTCCCG
N196A	GCAATTGGTACCGCATATATGGATTTCCCG
Y197A	GCAATTGGTACCAATGCAATGGATTTCCCG
F200A	CCAATTATATGGATGCACCGGGCTTTCT
195-200R	GAAAACGATTACTACCATCCAGCAGGCC
L103G/I104A	GGTGACCGGCGGTGCAGTTACCGGCAAA
L103G/I104-R	CCACTGCGCGAACAATACCATTGGC

The above primers were used for site-specific mutagenesis. The amino acid at each site mutates into 19 other amino acids, and the corresponding codon preferred by E. coli was selected to replace the redmarked codon.

Table S2 Summary of HHDHs catalyzed SO for the synthesis of oxazolidinone from the recent

literature ${ }^{3,4}$.					
Entry ${ }^{a}$	HHDH	Substrate	Relative activity ${ }^{b}$ [\%]	Ratio 2a:3a	2a $e e^{c}$ [\%]
1^{3}	Control ${ }^{\text {d }}$	SO	<1	ND	ND
2^{3}	CsHheA	SO	31	26:74	$32(R)$
3^{3}	CsHheB	SO	66	12:88	79 (R)
4^{3}	GbHheB	SO	49	57:43	69 (R)
5^{3}	ArHheC	SO	94	41:59	72 (S)
6^{3}	SsHheD	SO	80	95:5	38 (R)
7^{3}	EbHheD	SO	72	96:4	$42(R)$
8^{3}	NiHheG	SO	35	97:3	65 (R)
9^{3}	$A c$ HheG	SO	57	99:1	34 (S)
10^{3}	$A b H h e G$	SO	135	98:2	30 (R)
11^{3}	IcHheG	SO	100	91:9	31 (S)
12^{4}	$I c$ HheG $^{\text {ef }}$	R-SO	ND	ND	>99 (S)
13^{4}	$I c \mathrm{HheG}^{\text {ef }}$	S-SO	ND	ND	>99 (R)

${ }^{a}$ Reaction conditions: 1 mL Tris-SO S_{4} buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$), $1 \mathrm{a}(10 \mathrm{mM}), 1 \% \mathrm{DMSO}$, $\mathrm{NaOCN}(15 \mathrm{mM})$, wet cells of E. coli $(\mathrm{HHDH})(25 \mathrm{~g} / \mathrm{L}), 30^{\circ} \mathrm{C} .{ }^{b}$ The amount of product performed at 2.5 h was used to indicate the activity. As the positive control, the activity of $I c$ HheG was defined as 100% and the selectivity data are from the references. ${ }^{c}$ Absolute configurations were determined by comparison with references. ${ }^{d}$ Host E. coli BL21(DE3) cells without the HHDH gene were used. ${ }^{e}$ Configurations were defined using commercial enantiopure $(R)-2 \mathrm{a}$ and $(S)-2 \mathrm{a}$. The ee values were determined by chiral HPLC. ${ }^{f}$ Reaction conditions: PB buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$) 30 mL , cell density 15 g cdw/L, epoxides conc. $15 \mathrm{mM}, \mathrm{NaOCN}$ conc. 45 mM , reaction temperature $30^{\circ} \mathrm{C}$, reaction time 12 h . $\mathrm{ND}=$ not determined. All reactions were performed in triplicate.

Table S3 Alanine-scanning mutagenesis of wild-type $I c$ HheG with 1a. ${ }^{a}$

Mutant	Relative activity (\%)	2a:3a	2a ee(\%)
WT	$100^{\text {b }}$	$93: 7$	$33(S)$
Y18A	0	-	-
L103A	133	$99: 1$	$50(S)$
I104A	0	-	-
T151A	0	-	-
A153L	0	-	-
T154A	0	-	ND
T195A	6	$95: 5$	$34(R)$
N196A	43	-	-
Y197A	0	-	-
F200A	0	-	-

[^0]Table S4 Relative activity, regio- and stereoselectivity of mutants towards $\mathbf{1 a}$ by using resting cells. ${ }^{a}$

Mutant	Relative activity (\%)	Ratio 2a:3a	2a ee(\%)
Y18H	82	>99:1	82 (S)
Y18F	122	>99:1	65 (S)
L103G	99	>99:1	83 (S)
L103Q	130	>99:1	39 (S)
L103E	121	>99:1	39 (S)
L103T	155	98:2	$32(S)$
L103W	150	96:4	48 (S)
L103F	67	98:2	71 (S)
L103V	166	97:3	$24(S)$
L103Y	148	99:1	40 (S)
L103D	155	98:2	34 (S)
L103R	127	>99:1	$51(S)$
L103N	129	98:2	56 (S)
L103M	150	98:2	42 (S)
L103K	137	97:3	$50(S)$
L103I	125	>99:1	34 (S)
L103S	133	>99:1	49 (S)
L103H	134	>99:1	44 (S)
I104N	70	99:1	95 (S)
I104Y	102	99:1	$82(S)$
I104T	28	98:2	84 (S)
I104H	105	97:3	75 (S)
I104L	102	99:1	69 (S)
I104C	100	99:1	65 (S)
I104Q	70	99:1	83 (S)
I104M	121	>99:1	50 (S)
I104S	44	96:4	91 (S)
I104E	35	99:1	83(S)
I104F	80	97:3	81 (S)
N196G	102	95:5	30 (R)
N196C	126	99:1	36 (S)
N196Y	7	ND	ND
N196Q	2	ND	ND
N196W	82	>99:1	75 (S)
N196L	116	98:2	22 (S)
N196H	67	>99:1	60 (S)
N196F	48	>99:1	67 (S)
N196M	15	>99:1	22 (S)
N196S	4	ND	ND

[^1]Table S5 Relative activity, regio- and stereoselectivity of multisite variants toward styrene oxide. ${ }^{a}$

$I c$ HheG mutants	Relative activity(\%)	2a:3a	2a ee (\%)
WT	100	93:7	33 (S)
Y18F/L103K	99	>99:1	73 (S)
Y18F/L103F	98	>99:1	60 (S)
Y18F/L103H	106	>99:1	64 (S)
Y18F/L103D	109	>99:1	64 (S)
Y18F/L103R	82	>99:1	76 (S)
Y18F/L103E	112	>99:1	$52(S)$
Y18F/L103M	97	>99:1	72 (S)
Y18F/L103Q	96	>99:1	72 (S)
Y18F/L103N	100	>99:1	61 (S)
Y18F/L103C	101	>99:1	72 (S)
Y18F/L103G	97	>99:1	75 (S)
Y18W/N196W	22	99:1	95 (S)
Y18H/N196W	34	98:2	32 (R)
Y18M/N196W	4	ND	ND
Y18N/N196W	26	97:3	96 (S)
Y18H/N196F	23	96:4	12 (S)
Y18H/N196L	13	94:6	15 (S)
Y18H/N196M	55	>99:1	37 (S)
Y18H/N196G	31	95:5	67 (R)
L103G/L104N	32	95:5	91 (S)
L103G/I104T	61	95:5	88 (S)
L103G/I104F	76	98:2	95 (S)
L103G/L104Y	85	98:2	77 (S)
L103G/I104M	125	96:4	62 (S)
L103G/I104R	50	93:7	95 (S)
L103G/I104E	25	90:10	87 (S)
L103G/I104G	23	93:7	89 (S)
L103G/I104K	35	92:8	89 (S)
L103G/T195S	42	85:15	71 (S)
L103G/T195M	30	99:1	94 (S)
L103G/T195W	77	98:2	80 (S)
L103G/N196C	204	98:2	$49(S)$
L103G/N196F	54	>99:1	76 (S)
L103G/N196H	98	>99:1	79 (S)
L103G/N196L	150	97:3	49 (S)
L103G/N196M	165	97:3	27 (S)
L103G/N196Q	42	95:5	89 (S)
L103G/N196Y	28	91:9	79 (S)
L103C/N196W	136	97:3	79 (S)
L103D/N196W	187	93:7	66 (S)
L103E/N196W	154	97:3	57 (S)

L103H/N196W	145	$93: 7$	$73(S)$
L103M/N196W	135	$96: 4$	$79(S)$
L103N/N196W	143	$>99: 1$	$76(S)$
L103Q/N196W	156	$97: 3$	$76(S)$
L103S/N196W	149	$>99: 1$	$77(S)$
L103T/N196W	146	$>99: 1$	$70(S)$
L103Y/N196W	112	$>99: 1$	$82(S)$
L103A/N196W	188	$97: 3$	$57(S)$
L103G/N196W	84	$98: 2$	$90(S)$
I104H/N196W	50	$95: 5$	$97(S)$
I104Y/N196W	72	$97: 3$	$96(S)$
I104W/N196W	87	$99: 1$	$91(S)$
I104V/N196W	92	$99: 1$	$85(S)$
I104F/N196W	73	$>99: 1$	$98(S)$
I104C/N196W	43	$99: 1$	$98(S)$
I104G/N196W	56	$98: 2$	$95(S)$

[^2]

1a

1 e

$1 i$

1b

1f

1j

1c

1 g

1k

1d

1h

11

Fig. S1 Epoxide used as substrates in this study.

We established a large-scale biological reaction with epoxyethane $\mathbf{1 a}(1.2 \mathrm{~g})$ as the substrate. The reaction was continued for 6 hours with a substrate concentration of 50 mM . After treatment, the final yield was $38 \%(0.61 \mathrm{~g})$

The $e e$ was determined by chiral HPLC (Chiralpak IC, n-hexane $/ i$ - $\operatorname{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=210 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 a}=27.3 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 a}=40.5 \mathrm{~min})$.

Fig. S2 HPLC chromatograms of rac-2a synthesized by $I c$ HheG, (S)-2a synthesized by mutant I104F/N196W.

The ee was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 b}=67.2 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 b}=44.5 \mathrm{~min})$.

Fig. S3 HPLC chromatograms of rac-2b synthesized by $I c$ HheG, (S)-2b synthesized by mutant I104F/N196W.

The $e e$ was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i-\operatorname{PrOH}=95 / 5$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2} \mathbf{c}=89.9 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2} \mathbf{c}=86.4 \mathrm{~min})$.

Fig. S4 HPLC chromatograms of rac-2c synthesized by $I c$ HheG, (S)-2c synthesized by mutant I104F/N196W.

7010005000202020100					${ }_{6} 5$		70 mm
	$\stackrel{15}{4}$	50	${ }_{65}$	${ }_{6}$			
	ID\#	Ret.Time	Area	Height		Area \%	
	1	46.399	4411.8	59.9		58.229	
	2	60.719	3164.8	32.8		41.771	
$\begin{gathered} 30 \\ 80 \\ 40 \\ 20 \\ 20 \\ 0 \end{gathered}$							
	45	50	55	${ }_{0}^{1}$	${ }^{65}$		${ }_{70} 70$
ID\#		Ret.Time	Area	Height		Area \%	
1		46.362	1745.2	24.3		16.895	
2		60.1	8584.5	87.3		83.105	

The ee was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$-PrOH $=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 d}=60.1 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 d}=46.4 \mathrm{~min})$.

Fig. S5 HPLC chromatograms of rac-2d synthesized by $I c$ HheG, (S)-2d synthesized by mutant I104F/N196W.

ID\#	Ret.Time	Area	Height	Area \%
1	36.803	716.9	11.1	62.358
2	46.742	432.7	5.8	37.642

| ID\# | Ret.Time | Area | Height | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 36.739 | 2085.7 | 31.8 | 98.698 |
| 2 | 47.457 | 27.5 | $3.8 \mathrm{E}-1$ | 1.302 |

The $e e$ was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$ - $\operatorname{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2} \mathbf{e}=36.7 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2} \mathbf{e}=47.5 \mathrm{~min})$.

Fig. S6 HPLC chromatograms of rac-2e synthesized by $I c$ HheG, (S)-2e synthesized by mutant I104F/N196W.

The $e e$ was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 f}=39.4 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 f}=45.7 \mathrm{~min})$.

Fig. S7 HPLC chromatograms of rac-2f synthesized by $I c$ HheG, (S) -2f synthesized by mutant I104F/N196W.

ID\#	Ret.Time	Area	Height	Area \%
1	42.492	29.5	$4.4 \mathrm{E}-1$	1.183
2	60.359	2462.7	26.1	98.817

The ee was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 g}=42.5 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 g}=60.4 \mathrm{~min})$.

Fig. S8 HPLC chromatograms of rac-2g synthesized by IcHheG, (S)-2g synthesized by mutant I104F/N196W.
(105.219

The ee was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2 h}=104.8 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2 h}=120.7 \mathrm{~min})$.

Fig. S9 HPLC chromatograms of rac-2h synthesized by $I c$ HheG, (S)-2h synthesized by mutant I104F/N196W

The ee was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2} \mathbf{i}=53.2 \mathrm{~min}, \mathrm{t}(R) \mathbf{- 2} \mathbf{i}=58.2 \mathrm{~min})$.

Fig. S10 HPLC chromatograms of rac-2i synthesized by $I c$ HheG, $(S) \mathbf{- 2} \mathbf{i}$ synthesized by mutant I104F/N196W.

The $e e$ was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S) \mathbf{- 2} \mathbf{j}=64.1 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2} \mathbf{j}=59.6 \mathrm{~min})$.

Fig. S11 HPLC chromatograms of rac- $\mathbf{2} \mathbf{j}$ synthesized by $I c H h e G,(S) \mathbf{- 2} \mathbf{j}$ synthesized by mutant I104F/N196W

The $e e$ was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate 0.6 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 k}=61.1 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 k}=69.4 \mathrm{~min})$.

Fig. S12 HPLC chromatograms of rac-2k synthesized by $I c$ HheG, (S) $\mathbf{- 2 k}$ synthesized by mutant I104F/N196W.

The ee was determined by chiral HPLC (Chiralpak OD-H, n-hexane $/ i$-PrOH $=80 / 20$, flow rate 0.4 $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}(S)-\mathbf{2 l}=36.9 \mathrm{~min}, \mathrm{t}(R)-\mathbf{2 l}=44.8 \mathrm{~min})$.

Fig. S13 HPLC chromatograms of rac-21 synthesized by $I c$ HheG, (S) $\mathbf{- 2 1}$ synthesized by mutant I104F/N196W.

ID \#	RT (min)	Area \%	Area (pA•s)	Height (pA)
1	4.566	47.877	713.357	253.697
2	4.696	52.123	776.625	207.428

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $5^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S14 Chiral GC chromatograms of rac-1a; Chiral GC chromatogram analysis of biotransformation of rac-1a by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $3^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S15 Chiral GC chromatograms of rac-1b; Chiral GC chromatogram analysis of biotransformation of rac-1b by mutant I104F/N196W.

ID \#	RT (min)	Area \%	Area (pA•s)	Height (pA)
1	7.989	48.897	232.551	42.449
2	8.256	51.103	243.046	38.559

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $1^{\circ} \mathrm{C} / \mathrm{min}$ to $160^{\circ} \mathrm{C}$, and hold at $20^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S16 Chiral GC chromatograms of rac-1c; Chiral GC chromatogram analysis of biotransformation of rac-1c by mutant I104F/N196W.

ID \#	RT (min)	Area $\%$	Area (pA•s)	Height (pA)
1	7.028	49.569	1534.727	383.411
2	7.174	50.431	1561.407	286.935

ID \#	RT (min)	Area \%	Area (pA•s)	Height (pA)
1	7.145	5.733	35.165	10.374
2	7.223	94.267	578.176	141.498

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $3{ }^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S17 Chiral GC chromatograms of rac-1d; Chiral GC chromatogram analysis of biotransformation of rac-1d by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $0.5^{\circ} \mathrm{C} / \mathrm{min}$ to $115^{\circ} \mathrm{C}$, and hold at 10 ${ }^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S18 Chiral GC chromatograms of rac-1e; Chiral GC chromatogram analysis of biotransformation of rac-1e by mutant I104F/N196W.

ID \#	RT (min)	Area $\%$	Area (pA•s)	Height (pA)
1	5.514	50.059	233.076	52.329
2	5.830	49.941	232.529	45.216

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $5^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S19 Chiral GC chromatograms of rac-1f; Chiral GC chromatogram analysis of biotransformation of rac-1f by mutant I104F/N196W.

ID \#	RT (min)	Area $\%$	Area (pA $\cdot \mathrm{s})$	Height (pA)
1	9.768	50.066	322.484	50.067
2	10.457	49.934	321.634	43.985

ID \#	RT (min)	Area \%	Area (pA•s)	Height (pA)
1	9.809	45.413	54.530	8.337
2	10.519	54.587	65.546	9.648

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $1^{\circ} \mathrm{C} / \mathrm{min}$ to $160^{\circ} \mathrm{C}$, and hold at $20^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S20 Chiral GC chromatograms of rac-1g; Chiral GC chromatogram analysis of biotransformation of rac-1g by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $5^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S21 Chiral GC chromatograms of rac-1h; Chiral GC chromatogram analysis of biotransformation of rac-1h by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $2^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $20^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S22 Chiral GC chromatograms of rac-1i; Chiral GC chromatogram analysis of biotransformation of rac-1i by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $1^{\circ} \mathrm{C} / \mathrm{min}$ to $160^{\circ} \mathrm{C}$, and hold at $20^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S23 Chiral GC chromatograms of rac-1j; Chiral GC chromatogram analysis of biotransformation of $\mathrm{rac} \mathbf{- 1 \mathbf { j }}$ by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $5^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S24 Chiral GC chromatograms of rac-1k; Chiral GC chromatogram analysis of biotransformation of $\mathbf{r a c}-\mathbf{1 k}$ by mutant I104F/N196W.

The detection method is as follows: start at $100^{\circ} \mathrm{C}$, increase at $3^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$, and hold at $10^{\circ} \mathrm{C} / \mathrm{min}$ increase to $220^{\circ} \mathrm{C}$ for 8 minutes.

Fig. S25 Chiral GC chromatograms of rac-11; Chiral GC chromatogram analysis of biotransformation of rac-11 by mutant I104F/N196W.

Fig. S26 Docking analysis of $I c$ HheG with 1a.

Fig. S27 SDS-PAGE analysis of overexpression of the recombinant E. coli (IcHheG) and its mutants. Lane M: protein marker; Lane 1: the supernatant of E. coli (IcHheG); Lane 2: the deposit of E. coli (IcHheG); Lane 3: the supernatant of E. coli (N196W); Lane 4: the deposit of E. coli (N196W); Lane 5: the supernatant of E. coli $(\mathrm{L} 103 \mathrm{G})$; Lane 6: the deposit of E. coli (L103G); Lane 7: the supernatant of E. coli (I104F/N196W); Lane 8: the deposit of E. coli (I104F/N196W).

Fig. S28 SDS-PAGE analysis of the purification of $I c$ HheG and mutant I104F/N196W. Lane M: protein marker; Lane 1: purified mutant I104F/N196W; Lane 2: purified IcHheG.

Fig. S29: a: Structural comparison of $A b H h e G$ (sand) with $I c H h e G$ (deepblue). b: Structural comparison of HheA (green) with $I c$ HheG (deep blue). c: Protein sequence alignment of $I c \mathrm{HheG}, \mathrm{AbHheG}$ and HheA. Halide binding sites are marked with black box. The catalytic triad are marked by blue triangles. Residues $18(I c \mathrm{HheG}), 15(\mathrm{AbHheG})$ and $12(\mathrm{HheA})$ are marked by red triangle. Residues 104 (IcHheG), 90 (AbHheG) and 76 (HheA) are marked by red triangle. Residues 196 (IcHheG), 182 (AbHheG) and 178 (HheA) are marked by red triangle.

Fig. S30 Structural comparison of WT IcHheG (cyan) with mutant I104F/N196W (grey). Halide binding loop in WT IcHheG (Residues 195-201) is marked with deepblue. Halide binding loop in mutant I104F/N196W (Residues 195-201) is marked with yellow.

Fig. S31 NMR spectra copies of (S)-4-phenyloxazolidin-2-one (2a).

Fig. S32 NMR spectra copies of (S)-4-(o-tolyl)oxazolidin-2-one (2b).

Fig. S33 NMR spectra copies of (S)-4-(p-tolyl)oxazolidin-2-one (2c).
4ch3.001.esp
M06(s)
$\stackrel{\sim}{\sim}$

Fig. S34 NMR spectra copies of (S)-4-(p-tolyl)oxazolidin-2-one (2d).

Fig. S35 NMR spectra copies of (S)-4-(2-fluorophenyl)oxazolidin-2-one (2e).

Fig. S36 NMR spectra copies of (S)-4-(4-fluorophenyl)oxazolidin-2-one (2f).

Fig. S37 NMR spectra copies of (S)-4-(2-chlorophenyl)oxazolidin-2-one (2g).

Fig. S38 NMR spectra copies of (S)-4-(3-chlorophenyl)oxazolidin-2-one (2h).

Fig. S39 NMR spectra copies of (S)-4-(4-chlorophenyl)oxazolidin-2-one (2i).

Fig. S40 NMR spectra copies of (S)-4-(3-bromophenyl)oxazolidin-2-one (2j).

4Br.001.esp

Fig. S41 NMR spectra copies of (S)-4-(4-bromophenyl)oxazolidin-2-one (2k).

Fig. S42 NMR spectra copies of (S)-4-(3,4-dichlorophenyl)oxazolidin-2-one (2I).

References

(1) O. Mazimba, R. R. Majinda and I. B. Masesane, B. Chem. Soc. Ethiopia., 2011, 25, 299-304.
(2) (2) F. L. Li, Y. Y. Qiu, Y. C. Zheng, F. F. Chen, X. D. Kong, J. H. Xu and H. L. Yu, Adv. Synth. Catal., 2020, 362, 4699-4706.
(3) C. H. Zhou, X. Chen, T. Lv, X. Han, J. H. Feng, W. D. Liu, Q. Q. Wu and D. M. Zhu, ACS. Catal., 2023, 13, 4768-4777.
(4) N. Wan, J. Tian, X. Zhou, H. Wang, B. Cui, W. Han and Y. Chen, Adv. Synth. Catal., 2019, 361, 4651-4655.

[^0]: ${ }^{a}$ Reactions were carried out in 1 mL Tris- SO_{4} buffer ($50 \mathrm{mM}, \mathrm{pH} 7.5$) containing E. coli (HHDH) wet cells $(50 \mathrm{~g} / \mathrm{L}), 1 \% \mathrm{v} / \mathrm{v}$ DMSO, $\mathbf{1 a}(10 \mathrm{mM})$ and $\mathrm{NaOCN}(15 \mathrm{mM})$ at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for $3 \mathrm{~h} .{ }^{\mathrm{b}}$ The activity of wild type $I c$ HheG towards $\mathbf{1 a}$ was defined as 100%. ${ }^{\text {c }}$ ND means not detected.

[^1]: ${ }^{a}$ Reactions were carried out in 1 mL Tris- SO_{4} buffer $(50 \mathrm{mM}, \mathrm{pH} 7.5)$ containing E. coli (HHDH) wet cells $(50 \mathrm{~g} / \mathrm{L}), 1 \% \mathrm{v} / \mathrm{v}$ DMSO, $\mathbf{1 a}(10 \mathrm{mM})$ and $\mathrm{NaOCN}(15 \mathrm{mM})$ at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 3 h .

[^2]: ${ }^{a}$ Reactions were carried out in 1 mL Tris-SO S_{4} buffer $(50 \mathrm{mM}, \mathrm{pH} 7.5)$ containing E. coli (HHDH) wet cells ($50 \mathrm{~g} / \mathrm{L}$), $1 \% \mathrm{v} / \mathrm{v}$ DMSO, $\mathbf{1 a}(10 \mathrm{mM})$ and $\mathrm{NaOCN}(15 \mathrm{mM})$ at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 3 h .

