Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

CO₂ Chemisorption and Activation on Carbon Nitride with Less Amino Groups Boosts CO₂ Photoreduction

Debin Zeng^{a,1}, Xiting Wang^{a,1}, Chunguang Kuai^a, Zhuo Jiang^a,* and Yuzheng Guo^a,* ^aSchool of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, PR, China *Corresponding authors

E-mail: zhuojiang@whu.edu.cn; yguo@whu.edu.cn ¹These authors contributed equally to this work.

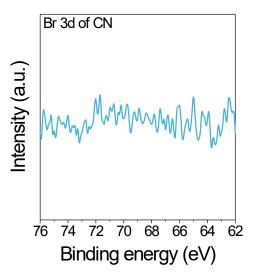


Figure S1. X-ray photoelectron spectra (XPS) of Br 3d.

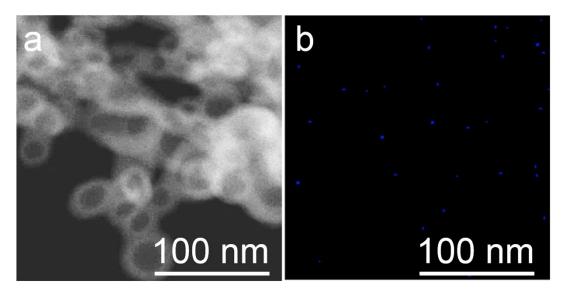
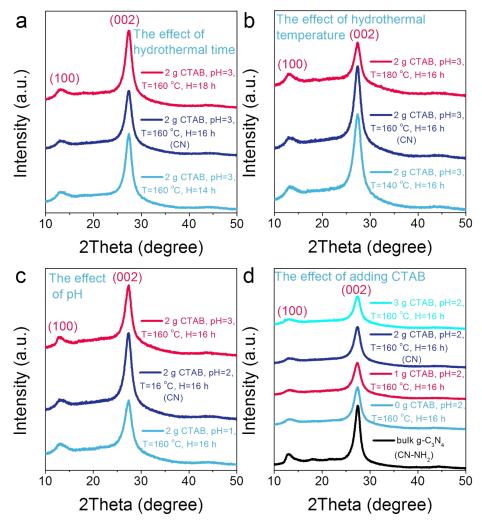



Figure S2. a) Scanning transmission electron microscope (STEM) image. b) Elemental mapping.

Figure S3. XRD patterns of samples synthesized by different condition. a) Controlling the hydrothermal time. **b)** Controlling the hydrothermal temperature. **c)** Controlling the pH value. **d)** Adding the hexadecyl trimethyl ammonium bromide.

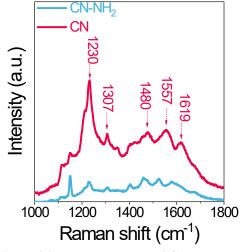


Figure S4. Raman spectra of CN-NH₂ and CN.



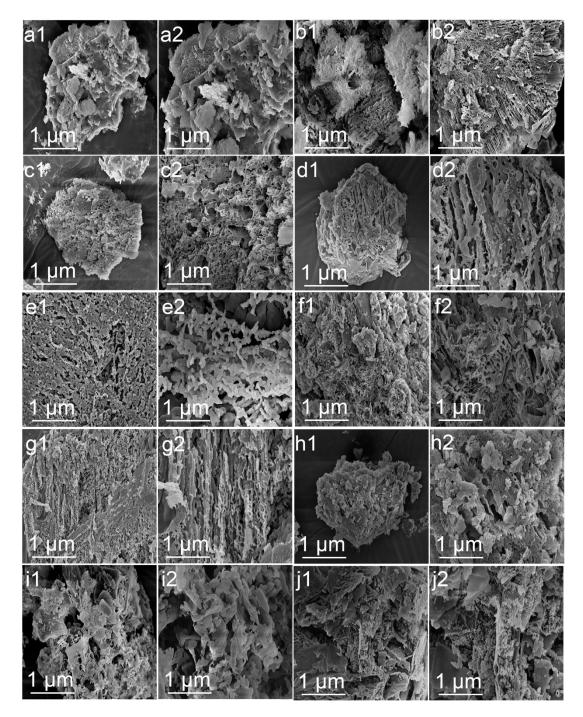
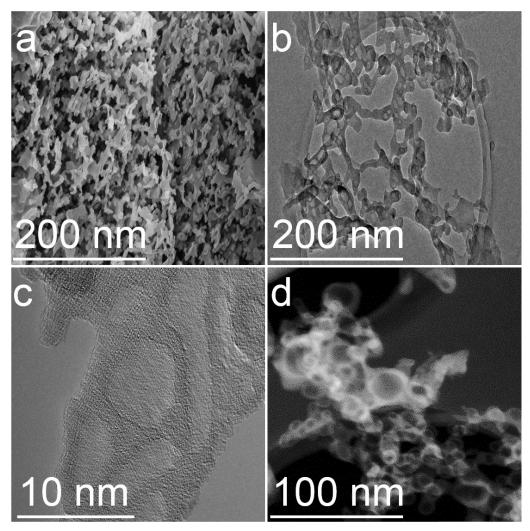
Figure S5. Electron paramagnetic resonance (EPR) spectra affected by adding the CTAB.

Table S1. The peak areas proportions of C-N-H, N-(C)₃ and C-N=C based on X-ray photoelectron spectra results.

sample	C-N=C (%)	N-(C) ₃ (%)	C-N-H (%)	C-N-H/N-(C) ₃
CN-NH ₂	70.31	20.65	9.03	0.44
CN	71.87	20.36	7.77	0.38

Table S2. The peak areas proportions of NH and NH_2 group based on magic angle spinning nuclear magnetic resonance with a H-labelled experiment.

sample	NH_2 (%)	NH (%)
CN-NH ₂	59.45	40.54
CN	26.58	73.42

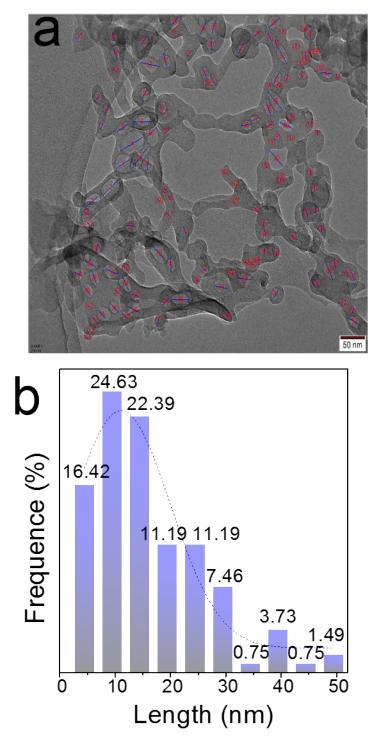

Figure S6. SEM of porous CN synthesized by different condition, such as the amount of hexadecyl trimethyl ammonium bromide (CTAB), the regulated pH of solution, hydrothermal temperature and time: a1 and a2) 0 g CTAB, pH=2, T=160 °C and H=16 h. b1 and b2) 1 g CTAB, pH=2, T=160 °C and H=16 h. c1 and c2) 2 g CTAB, pH=2, T=160 °C and H=16 h. d1 and d2) 3 g CTAB, pH=2, T=160 °C and H=16 h. e1 and e2) 2 g CTAB, pH=1, T=160 °C and H=16 h. f1 and f2) 2 g CTAB, pH=3, T=160 °C and H=16 h. g1 and g2) 2 g CTAB, pH=2, T=160 °C and H=14 h. h1 and h2) 2 g CTAB, pH=2, T=160 °C and H=18 h. i1 and i2) 2 g CTAB, pH=2, T=140 °C and H=16 h. j1 and j2) 2 g CTAB, pH=2, T=180 °C and H=16 h.

Figure S7. Field-emission scanning electron microscope (FESEM) images of CN-NH₂.

Figure S8. Physical morphology and porous properties of CN. a) Field-emission scanning electron microscope (FESEM) image. **b)** Transmission electron microscope (TEM). **c)** High resolution transmission electron microscope (HRTEM). **d)** Scanning transmission electron microscope (STEM).

Figure S9. The pore size distribution of porous CN: a) The selected areas for pore size statistics, b) the result of measured pore size distribution.

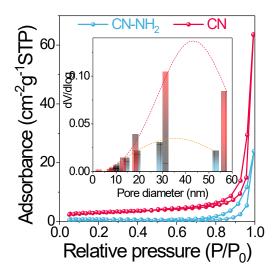


Figure S10. Nitrogen adsorption-desorption isotherm and pore size distribution.

Table S3. Nanoparticle size of CN-NH₂ and CN.

sample	Nanoparticle size (nm)
CN-NH ₂	1030 - 4160
CN	160 - 710

Table S4. BET specific surface area and pore size of CN-NH₂ and CN.

sample	BET specific surface area (m ² g ⁻¹)	Pore size (nm)
CN-NH ₂	2.02	43.69
CN	10.51	45.50

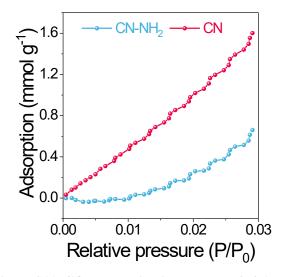


Figure S11. CO₂ adsorption isotherms at 273.15 K.

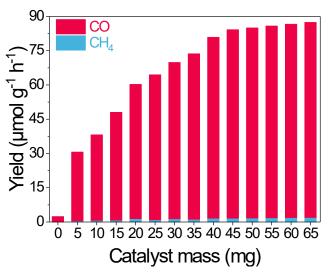


Figure S12. Photocatalytic performance of CN with different catalyst mass.

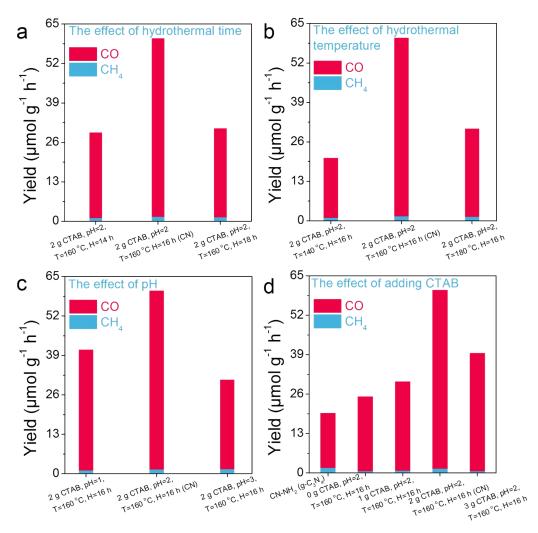


Figure S13. Photocatalytic performance of samples synthesized by different conditions. a) The effect of hydrothermal time. b) The effect of hydrothermal temperature. c) The effect of regulating pH. d) The effect of adding CTAB.

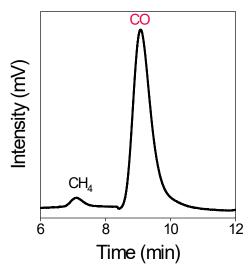


Figure S14. The CH_4 and CO signals collected by gas chromatography for confirming the CH_4 and CO productions.

Table S5. Comparison of CO₂ photoreduction performance with other photocatalysts.

Table 33. Com	Table 55. Comparison of CO ₂ photoreduction performance with other photocatalysis.							
Sample	Light source	Products	Main product rate	Main product	Reference			
			(CO)	selectivity (CO)				
CN-NH ₂	300 W Xe lamp	$\mathrm{CH_{4},CO}$	18.07 μmol g ⁻¹ h ⁻¹	91.52%	This work			
CN	300 W Xe lamp	CH ₄ , CO	58.83 μmol g ⁻¹ h ⁻¹	97.61%	This work			
TiO ₂ /CsPbBr ₃	300 W Xe lamp	H_2 , CO	9.02 μmol g ⁻¹ h ⁻¹	95 %	[1]			
$\mathrm{Bi_{4}Ti_{3}O_{12}}$	300 W Xe lamp	CO	$15.1~\mu mol~g^{-1}~h^{-1}$	/	[2]			
BiOIO ₃ with surface oxygen vacancies	300 W Xe lamp	H ₂ , CH ₄ , CO	17.33 $\mu mol \ g^{-1} \ h^{-1}$	/	[3]			
Br-Bi2O2(OH)(NO3)	300 W Xe lamp	$\mathrm{CH_{4},CO}$	8.12 μmol g ⁻¹ h ⁻¹	/	[4]			
CoRu-HCNp	300 W Xe lamp	CH ₄ , CO	27.31 μmol g ⁻¹ h ⁻¹	91.8 %	[5]			
$Cu/g-C_3N_4$	300 W Xe lamp	CH ₄ , CO	3.1 μmol g ⁻¹ h ⁻¹	~100%	[6]			
$LaPO_4/g-C_3N_4$	300 W Xe lamp	CO	14.4 μmol g ⁻¹ h ⁻¹	/	[7]			
Ni/Porous few layer g-C ₃ N ₄	300 W Xe lamp	CH ₄ , CO	8.6 μmol g ⁻¹ h ⁻¹	81.1%	[8]			
R-CNS-400	300 W Xe lamp	CO , CH_4 , and C_2H_4	55.3 μmol g ⁻¹ h ⁻¹	98.9 %	[9]			
CCN	300 W Xe lamp	CO, CH ₄ , CH ₃ OH, and CH ₃ CH ₂ OH	12.1 μmol g ⁻¹ h ⁻¹	91.5 %	[10]			
Cu/CN-0.25	300 W Xe lamp	CO, CH ₄ , and CH ₃ OH	11.2 μmol g ⁻¹ h ⁻¹	82.6 %	[11]			
Ni/CN-0.5	300 W Xe lamp	CO, CH_4	19.9 μmol g ⁻¹ h ⁻¹	81.22%	[12]			
0.7Ni-5OB-CN	300 W Xe lamp	CO, CH_4	22.1 μmol g ⁻¹ h ⁻¹	71.75%	[13]			
CoNiSx-CN	300 W Xe lamp	CO, CH_4	11.77 μmol g ⁻¹ h ⁻¹	92.86 %	[14]			
$g-C_3N_4/TiO_2/C$	300 W Xe lamp	CO, CH_4	8.65 μmol g ⁻¹ h ⁻¹	87.52%	[15]			
$P-CeO_2/g-C_3N_4$	300 W Xe lamp	CO	$0.523~\mu mol~g^{-1}h^{-1}$	100%	[16]			
Ni/S-CN-N	300 W Xe lamp	CO, CH_4	11.72 μmol g ⁻¹ h ⁻¹	75.61%	[17]			

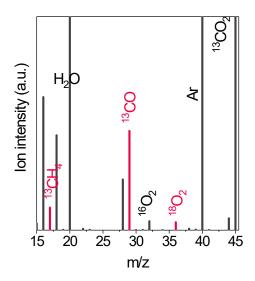
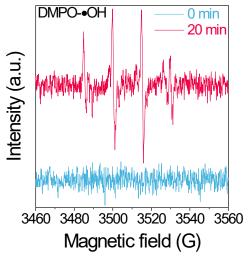



Figure S15. The isotope tracer experiment of H_2O oxidation (The volume ratio between $H_2^{16}O$ and $H_2^{18}O$ is 1 : 1).

Figure S16. Electron paramagnetic resonance signal of CN. DMPO-•OH signal detected in dark condition and light irradiation for 20 min.

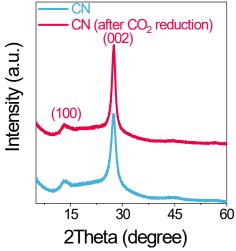


Figure S17. X-ray diffraction (XRD) pattern of CN and CN after CO₂ photoreduction.

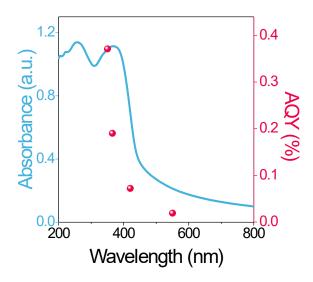
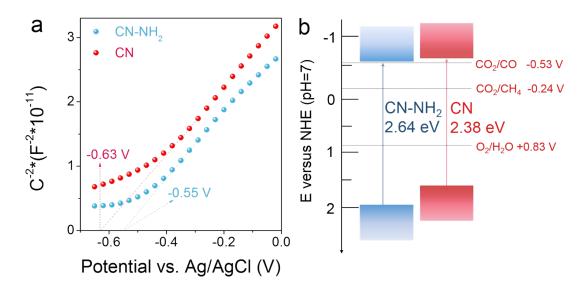



Figure S18. Absorbance and apparent quantum yield (AQY).

Figure S19. Redox potential: a) Reductive potentials obtained from Mott-Schottky plots and **b)** schematics illustrating the electronic band structures and redox potentials.

The band structures are important for CO_2 photoreduction^[18]. The Mott-Schottky tests indicated that both CN-NH₂ and CN had positive slopes, suggesting that both CN-NH₂ and CN were typical *n*-type semiconductor (Figure S14a). The flat-band potentials of CN-NH₂ and CN were -0.55 and -0.63 V, respectively. Generally, the conduction band minimum (CBM) of *n*-type semiconductor was closed to its flat-band potential^[19,20]. Thus, the CBM of CN-NH₂ and CN were about -0.55 and -0.63 V vs. NHE, which was close to other reports^[21-23]. Moreover, based on the $E_{VB} = E_{CB} + E_g$, the valance band minimum (VBM) of CN-NH₂ and CN were 2.09 and 1.75 V vs. NHE. Thus, the band structures and redox potentials of CO_2 reduction suggested that the CN-NH₂ and CN had suitable band structures for realizing CO_2 reduction (Figure S14b).

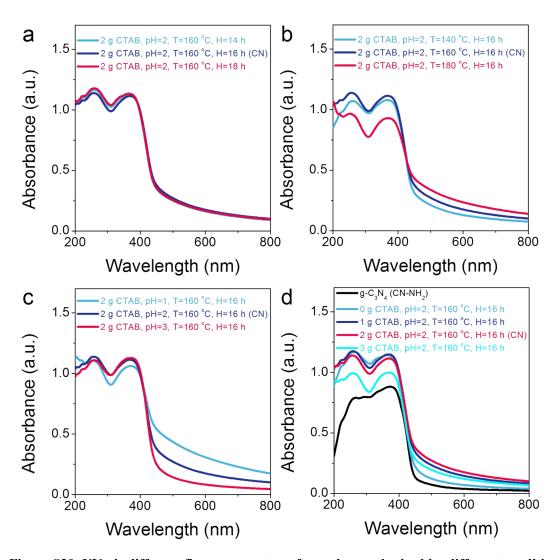


Figure S20. UV-vis diffuse reflectance spectra of samples synthesized by different condition.
a) Controlling the hydrothermal time. b) Controlling the hydrothermal temperature. c) Controlling the pH value. d) Adding the hexadecyl trimethyl ammonium bromide.

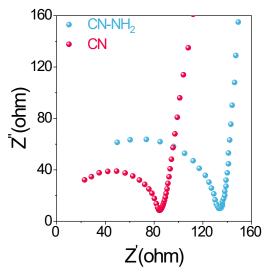
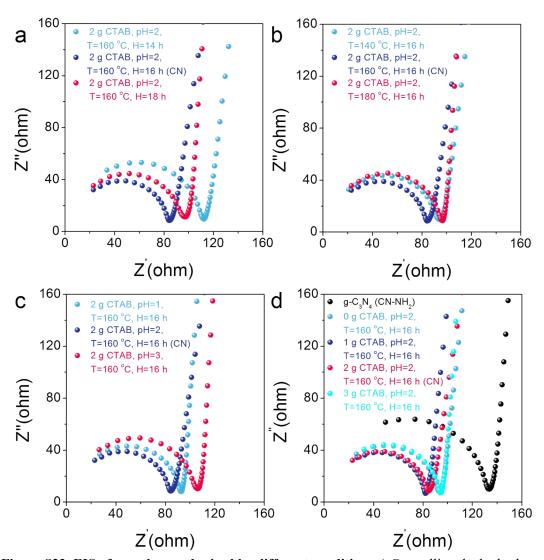



Figure S21. Electrochemical impedance spectroscopy (EIS) of CN and CN-NH₂.

Figure S22. EIS of samples synthesized by different condition. a) Controlling the hydrothermal time. **b)** Controlling the hydrothermal temperature. **c)** Controlling the pH value. **d)** Adding the hexadecyl trimethyl ammonium bromide.

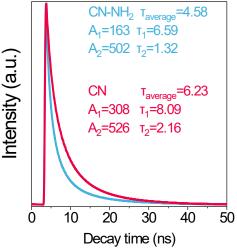


Figure S23. Time-resolved transient fluorescence decay spectra of CN and CN-NH₂.

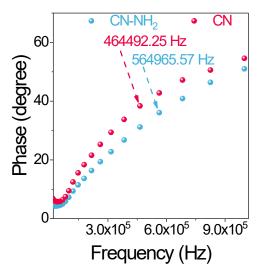
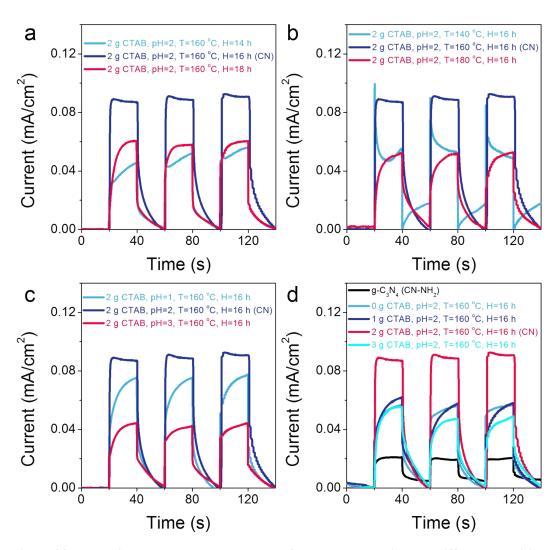



Figure S24. Bode phase spectra of CN and CN-NH2..

Figure S25. Transient photocurrent response of samples synthesized by different condition. a) Controlling the hydrothermal time. b) Controlling the hydrothermal temperature. c) Controlling the pH value. d) Adding the hexadecyl trimethyl ammonium bromide.

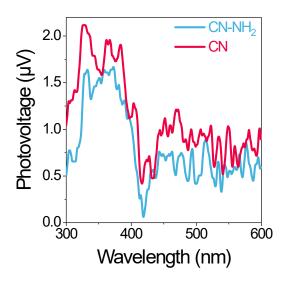


Figure S26. Photovoltage of CN-NH₂ and CN.

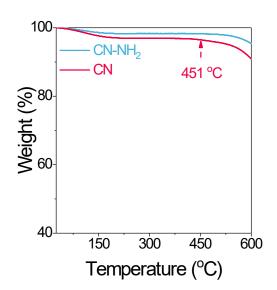
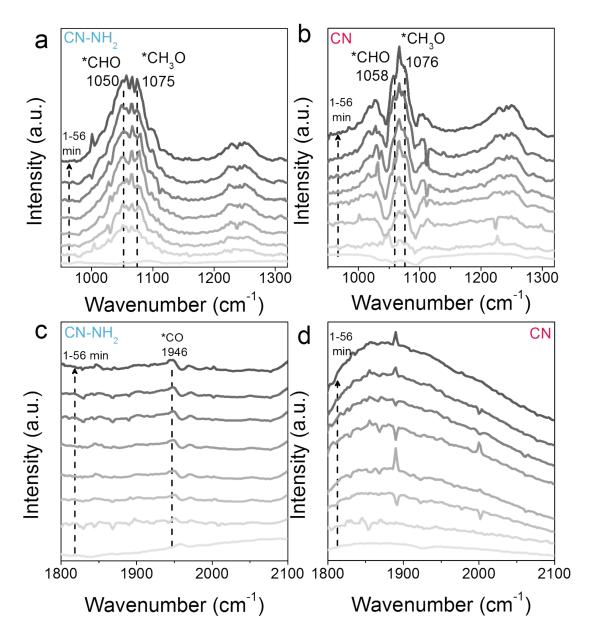



Figure S27. Thermogravimetry analysis.

Figure S28. *In-situ* Fourier-transform infrared (*In-situ* FTIR) spectra of CO₂ photoreduction. **a, c)** CN-NH₂, **b, d)** CN

Table S6. The peak areas of adsorbed H_2O , carbonates and adsorbed CO_2 based on XPS results.

1.	Adsorbed H ₂ O	Carbonates	Adsorbed CO ₂
sample	(CPS.eV)	(CPS.eV)	(CPS.eV)
CN-NH ₂	4149.16	6508.57	1502.39
CN	4248.82	7701.19	5373.94

Table S7. BET specific surface area, pore size, and nanoparticle size of CN-NH2 and CN.

sample	BET specific surface	CO production rate	CO production rate/BET specific
	area $(m^2 g^{-1})$	(µmol g ⁻¹ h ⁻¹)	surface area (μmol h ⁻¹ m ⁻²)
CN-NH ₂	2.02	18.07	8.94
CN	10.51	58.83	5.59

Table S8. The mass content of nitrogen, carbon and hydrogen.

sample	N (wt %)	C (wt %)	H (wt %)
CN-NH ₂	60.96	33.96	2.103
CN	59.04	34.14	1.807

The molar amount of nitrogen in CN-NH₂ = {[mass content of nitrogen (wt %)]×[catalyst mass (g)]} / { nitrogen relative atomic mass (14.007)}= $\{60.96\% \times 0.02g\}/14.007 = 8.704 \times 10^{-4} \text{ mol.}$

The molar amount of carbon in CN-NH₂ = {[mass content of carbon (wt %)]×[catalyst mass (g)]} / {carbon relative atomic mass (12.011)}= $\{33.96\% \times 0.02g\}/12.011=5.654 \times 10^{-4} \text{ mol.}$

The molar amount of hydrogen in CN-NH₂ = {[mass content of hydrogen (wt %)]×[catalyst mass (g)]} / {hydrogen relative atomic mass (1.008)}= { $2.103\%\times0.02$ g}/1.008= 4.173×10^{-4} mol.

The molar amount of nitrogen in CN = {[mass content of nitrogen (wt %)]×[catalyst mass (g)]} / {nitrogen relative atomic mass (14.007)} = $\{59.04\% \times 0.02g\}/14.007 = 8.43 \times 10^{-4} \text{ mol.}$

The molar amount of carbon in CN = {[mass content of carbon (wt %)]×[catalyst mass (g)]} / {carbon relative atomic mass (12.011)}= $\{34.14\% \times 0.02g\}/12.011 = 5.685 \times 10^{-4} \text{ mol.}$

The molar amount of hydrogen in CN = {[mass content of hydrogen (wt %)]×[catalyst mass (g)]} / {hydrogen relative atomic mass (1.008)}= $\{1.807\%\times0.02g\}/1.008=3.585\times10^{-4} \text{ mol.}$

Table S9. The molar amount of nitrogen, carbon and hydrogen in 0.02 g catalyst.

sample	N (mol)	C (mol)	H (mol)	Catalytic sites (mol)
CN-NH ₂	8.704×10^{-4}	5.654×10 ⁻⁴	4.173×10 ⁻⁴	4.173×10 ⁻⁴
CN	8.43×10 ⁻⁴	5.685×10 ⁻⁴	3.585×10^{-4}	5.88×10 ⁻⁵
The difference between			5.88×10 ⁻⁵	
CN-NH ₂ and CN			3.88^10	

To reveal the relationship between molar amount of catalytic sites and photocatalytic performance, the elemental analysis was conducted to calculate the molar amount of catalytic sites (Table S8 and Table S9). The molar amount of hydrogen in 0.2 g CN-NH₂ was 4.173×10⁻⁴ mol, implying that the -NH₂ group was 2.087×10⁻⁴ mol. There were two catalytic sites (nitrogen atoms) adjacent to the -NH₂ group, implying that the molar amount of catalytic sites in CN-NH₂ was 4.173×10⁻⁴ mol. The CO production rate of CN-NH₂ was 18.07 μmol g⁻¹ h⁻¹, thus, CO production rate of CN-NH₂ was 43302.18 μmol g_{catalytic site}⁻¹ h⁻¹. Importantly, the molar amount of lost hydrogen in 0.2 g CN was 5.88×10⁻⁵ mol, implying that the molar amount of lost -NH₂ group was 2.94×10⁻⁵ mol. There were two catalytic sites (nitrogen atoms) adjacent to the lost -NH₂ group, implying that the molar amount of catalytic sites (nitrogen atoms) adjacent to the lost -NH₂ group, implying that the molar amount of catalytic sites in CN was 5.88×10⁻⁵ mol. The CO production rates of CN was 58.83 μmol g⁻¹ h⁻¹, thus, CO production rate of CN was 1000510.20 μmol g_{catalytic site}⁻¹ h⁻¹, respectively.

Table S10. The turnover number (TON) and turnover frequency (TOF) of CO.

sample	Reaction	Yield of CO	Catalytic	TONA	TOF^b
	time (h)	(mol)	sites (mol)	TON ^a TOF ^b	
CN-NH ₂	3	1.08×10 ⁻⁶	4.173×10 ⁻⁴	2.598×10 ⁻³	8.659×10 ⁻⁴
CN	3	3.53×10 ⁻⁶	5.88×10 ⁻⁵	6.003×10^{-2}	2.001×10 ⁻²

^aTurnover number (TON) = [mol (product)]/[mol (catalytic sites)].

Reference

- [1] Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO₂/CsPbBr₃ hybrids for CO₂ photoreduction[J]. Nature communications, 2020, 11(1): 1-9.
- [2] Liu L, Huang H, Chen Z, et al. Synergistic polarization engineering on bulk and surface for boosting CO₂ photoreduction[J]. Angewandte Chemie International Edition, 2021, 60(33): 18303-18308.
- [3] Chen F, Ma Z, Ye L, et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO₂ photoreduction on BiOIO₃ single crystals[J]. Advanced Materials, 2020, 32(11): 1908350.
- [4] Hao L, Kang L, Huang H, et al. Surface halogenation induced atomic site activation and local charge separation for superb CO₂ photoreduction[J]. Advanced Materials, 2019, 31(25): 1900546.
- [5] Cheng L, Yue X, Wang L, et al. Dual Single Atom Tailoring with Bifunctional Integration for High Performance CO₂ Photoreduction[J]. Advanced Materials, 2021, 33(49): 2105135.
- [6] Li Y, Li B, Zhang D, et al. Crystalline carbon nitride supported copper single atoms for photocatalytic CO₂ reduction with nearly 100% CO selectivity[J]. ACS nano, 2020, 14(8): 10552-10561.
- [7] Li M, Zhang L, Fan X, et al. Core-shell LaPO₄/g-C₃N₄ nanowires for highly active and selective CO₂ reduction[J]. Applied Catalysis B: Environmental, 2017, 201: 629-635.
- [8] Cheng L, Yin H, Cai C, et al. Single Ni atoms anchored on porous few layer g C₃N₄ for photocatalytic CO₂ reduction: the role of edge confinement[J]. Small, 2020, 16(28): 2002411.
- [9] Liu Z, Zhao Z, Jiang W, et al. Structural reconstruction of carbon nitride with tailored electronic structure: A bifunctional photocatalyst for cooperative artificial photosynthesis and selective phenylcarbinol oxidation[J]. Applied Catalysis B: Environmental, 2021, 298: 120517.
- [10] Xia P, Antonietti M, Zhu B, et al. Designing defective crystalline carbon nitride to enable selective CO₂ photoreduction in the gas phase[J]. Advanced Functional Materials, 2019, 29(15): 1900093.
- [11] Wang J, Heil T, Zhu B, et al. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO₂ reduction[J]. ACS nano, 2020, 14(7): 8584-8593.
- [12] Tang R, Wang H, Zhang S, et al. A ball milling method for highly dispersed Ni atoms on g-C₃N₄ to boost CO₂ photoreduction[J]. Journal of Colloid and Interface Science, 2023, 630: 290-300.
- [13] Wang Y, Qu Y, Qu B, et al. Construction of Six-Oxygen-Coordinated Single Ni Sites on g-C₃N₄ with Boron-Oxo Species for Photocatalytic Water-Activation-Induced CO₂ Reduction[J]. Advanced materials, 2021, 33(48): 2105482.

 $^{^{}b}$ Turnover frequency (TOF) = [mol (product)]/[mol (catalytic sites)×(reaction time)].

- [14] Li F, Huang Y, Gao C, et al. The enhanced photo-catalytic CO₂ reduction performance of g-C₃N₄ with high selectivity by coupling CoNiS_x[J]. Materials Research Bulletin, 2021, 144: 111488.
- [15] Yang Y, Zhang D, Fan J, et al. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C₃N₄ and monolayer Ti₃C₂T_x MXene for photocatalytic CO₂ reduction[J]. Solar RRL, 2021, 5(2): 2000351.
- [16] Li W, Jin L, Gao F, et al. Advantageous roles of phosphate decorated octahedral CeO₂ {111}/g-C₃N₄ in boosting photocatalytic CO₂ reduction: Charge transfer bridge and Lewis basic site[J]. Applied Catalysis B: Environmental, 2021, 294: 120257.
- [17] Xu J, Chen Y, Chen M, et al. In situ growth strategy synthesis of single-atom nickel/sulfur codoped g-C₃N₄ for efficient photocatalytic tetracycline degradation and CO₂ reduction[J]. Chemical Engineering Journal, 2022, 442: 136208.
- [18] Matsumoto Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides[J]. Journal of Solid State Chemistry, 1996, 126(2): 227-234.
- [19] Li P, Li J, Feng X, et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning[J]. Nature communications, 2019, 10(1): 2177.
- [20] Wu P, Dai S, Chen G, et al. Interfacial effects in hierarchically porous α-MnO₂/Mn₃O₄ heterostructures promote photocatalytic oxidation activity[J]. Applied Catalysis B: Environmental, 2020, 268: 118418.
- [21] Mohamed N A, Safaei J, Ismail A F, et al. Fabrication of exfoliated graphitic carbon nitride,(g-C₃N₄) thin film by methanolic dispersion[J]. Journal of Alloys and Compounds, 2020, 818: 152916.
- [22] Wu F, Ma Y, Hu Y H. Near infrared light-driven photoelectrocatalytic water splitting over P-doped g-C₃N₄[J]. ACS Applied Energy Materials, 2020, 3(11): 11223-11230.
- [23] Duan S F, Tao C L, Geng Y Y, et al. Phosphorus-doped Isotype g-C₃N₄/g-C₃N₄: An Efficient Charge Transfer System for Photoelectrochemical Water Oxidation[J]. ChemCatChem, 2019, 11(2): 729-736.