Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Selective Vapor-Phase Formation of Dimethylformamide via Oxidative Coupling of Methanol and

Dimethylamine over Bimetallic Catalysts

SUPPORTING INFORMATION

Alexander P. Minne, Tristan Maxson, Tibor Szilvási, and James W. Harris*

Department of Chemical and Biological Engineering,

The University of Alabama, Tuscaloosa, AL, 35487

*Corresponding author: james.harris@eng.ua.edu

Table of Contents

S.1 Values of O ₂ Adsorption and Dissociation on Single Crystal Surfaces	pg. 3
S.2 Process Flow Diagram	pg. 4
S.3 Nitrogen Physisorption Isotherms	pg. 5
S.4 SEM/TEM Images	pg. 6
S.5 TEM Images of Used Catalyst Samples	pg. 9
S.6 XRD Data	pg. 12
S.7 UV-Vis Data	pg. 13
S.8 GradientCheck Calculations	pg. 14
S.9 Methanol Self-coupling Data	pg. 16
S.10 DMF Apparent Activation Energy and Reaction Orders	pg.18
S.11 CO ₂ Apparent Activation Energy and Reaction Orders	pg. 22
S.12 Example Transient Data with Long Time on Stream	pg. 24
S.13 DMF Co-fed Data	pg.25
S.14 Pd, PdAu, and PdCu Rate and Selectivity Comparison Data	pg.26
S.15 DFT Computational Inputs	pg. 27
S.16 References	pg. 29

Table S.1	. Values of O ₂ adsorption a	and dissociation on pure Au	ı surfaces.
Facet	O ₂ Adsorption Energy	O ₂ Dissociation Barrier	Source
	$(kJ mol^{-1})$	(kJ mol ⁻¹)	
Au(111)	-7.72 ^α	132 ^α	1
Au(211)	-14.5 ^α	108 ^α	2
Au(321)	-16.4 ^α	96.5 ^α	3
AgAu(211)	Not Reported	21.2 ^β	4
Ag(111)	-38.6 ^β	34.7 ^β	5
Ag(110)	-38.6 ^β	32.8 ^β	5
Ag(100)	-65.6 ^α	Not Reported	6
Pd(111)	-87.8 ^α	68.5 ^α	7
Pd(110)	-125 ^α	16.4 ^α	8
Pd(100)	-73.3 ^α	11.6 ^α	9
^{<i>a</i>} theory/calculated			
^β experimental			

S.1. Values of O_2 Adsorption and Dissociation on Single Crystal Surfaces

S.2. Process Flow Diagram

Figure S.1. Process flow diagram for the apparatus used for kinetic measurements.

S.3. Nitrogen Physisorption Isotherms

Figure S.2. N₂ physisorption isotherms for (top to bottom) 1:53 PdAu/SiO₂, 1:10 PdAu/SiO₂, 1:2 PdAu/SiO₂, Pd/SiO₂, 1:15 AgAu/SiO₂, and nanoporous gold.

S.4. SEM/TEM Images

Figure S.3. SEM images of 1:2 PdAu/SiO₂.

Figure S.4. SEM images of 1:15 AgAu/SiO₂.

Figure S.5. TEM images and particle size distribution of 1:2 PdAu/SiO₂.

Figure S.6 TEM images and particle size distribution of 1:53 PdAu/SiO₂.

Figure S.7. TEM images and particle size distribution of used 1:10 PdAu/SiO₂. This particle sample was subjected to multiple kinetic experiments at various conditions, approximately 100 hours of time on stream. Average particle size was shown to be 15.3 ± 7.3 nm.

Figure S.8. TEM images and particle size distribution of used 1:15 AgAu/SiO₂. This particle sample was subjected to multiple kinetic experiments at various conditions, approximately 100 hours of time on stream. Average particle size was shown to be 13.0 ± 5.8 nm.

Figure S.9. TEM images and particle size distribution of used Pd/SiO₂. This particle sample was subjected to multiple kinetic experiments at various conditions, approximately 100 hours of time on stream. Average particle size was shown to be 15.1 ± 11.2 nm.

S.6. XRD Data

Figure S.10. X-ray diffraction patterns for Au, Pd and PdAu/SiO₂ catalysts. From top to bottom; Au/SiO₂ (black), 1:53 PdAu/SiO₂ (light purple), 1:10 PdAu/SiO₂ (dark purple), 1:2 PdAu/SiO₂ (blue), Pd/SiO₂ (black).

S.7. UV-Vis Data

Figure S.11. Diffuse reflectance UV-Visible spectra of catalysts used in this study (a) Pd/SiO₂ (b) 1:2 PdAu/SiO₂ (c) 1:10 PdAu/SiO₂ (d) 1:53 PdAu/SiO₂ (e) Au/SiO₂.

S.8 GradientCheck Calculations

The GradientCheck tool developed by Hickman et al.¹⁰ was used to assess the relevance of heat and mass transfer limitations to the rates observed in this study. A screenshot of the example output files for the highest rates measured in this study are shown in Figure S.7.1. The authors note that GradientCheck does not allow in input of more than two reactants and such cannot accurately reflect all 3 reactants present in this work. For the sake of including the methanol and dimethylamine, the largest and the coupled molecules, oxygen was left out of the calculations. Based on these results, we concluded that heat and mass transfer limitations were likely irrelevant based on the rates measured in this study, and thus the rates reported are limited solely by kinetics and not by diffusion.

Reaction Phase:		Gas Phase 🖌 / default: Gas Phase					
Temperature (T _b & T _w):		398 / K					
Pressure (P):		1.43	1.43 / bar				
Reactor Radius (R _r):		0.00635	5] / n	n [Accepts scien	tific notation e.g. 1	e-3]
Bed Length (L _b):		0.003]/n	n	-	-
Catalyst Particle Shape:		Sphere	s 🗸				
Particle Radius (R _p):		0.00025	5] / n	n		
Observed Reaction Rate	(r _{obs}):	3.87936	6E-08] / n	noles of A × kg-cat	-1 × s ⁻¹	
Enthalpy of Reaction (ΔH	(m)	39520		آ/ J	× mole ⁻¹		
Reaction Order (n)		0 ~)		_			
Activation Energy (Eapp)		-54000]/J	× mole ⁻¹		
Conversion (X _A)		0.05 / unitless (0 to 1)					
					2		
Catalyst Bulk Density (pbu	_{ılk}):	38]/k	g × m ^{-s} [usually 5)	00-1500]	
Catalyst Void Fraction (ɛ):		0.4]/((0 to 1) [often 0.35-	0.45 (default 0.4)]	
Catalyst Thermal Conduct	tivity (k _p):	0.02		/ V	V × m ⁻¹ × K ⁻¹ [ofte	n 0.13-0.25]	
Catalyst Surface Area (S _{ir}	nt):	158] / n	n ² × g ⁻¹		
Catalyst Pore Volume (Vp	ore):	2.1698	ə-7] / n	n ³ × g⁻¹		
Catalyst Pore Tortuosity (1	r):	1.1 / unitless [often 3-7 for porous catalysts]					
Number of Reactants: Tw	• •				Number of Pr	oducts: One 🗸	
	<u>Ma</u> Reac	<u>ain</u> tant A	Reactant	B	Product C	Diluent D	
Inlet Mole Fractions:	0.02		0.0006		2.85687E-06	0.979397143	/ must add to 1
Fluid Viscosity (µ _f):	0.00125	8	0.0018994		0.00092	0.000024]/ kg × m ⁻¹ × s ⁻¹
Heat Capacity (C _p):	0.00362		1855		1610	10395	$J \times kg^{-1} \times K^{-1}$
Thermal Conductivity (k _f):	0.202		0.11		0.1660	0.15	/ W × m ⁻¹ × K ⁻¹
Diffusion Volume (Sv,j):	28.9		52.4		74.4	2.7	Estimate Σ _{v,i}
Molecular Weight (MW):	31		45.1		73.1	4	/ g × mol ⁻¹

Figure S.12. Inputs for GradientCheck.

r _{obs} < r _{max}	no	Is the observed reaction rate realistic?
∑ y _i = 1	yes	Do the mole fractions add to one?
$0.25 \leq \epsilon \leq 0.55$	yes	Is the void fraction within typical range?
0.1 < k _p < 1	no	Is the particle conductivity within typical range?
ε _p < 0.7	yes	Is the porosity within typical range?
2 < t < 6	no	Is the tortuosity within typical range?
0.5 < Pr < 1.5	no	Is the Prandtl number within typical range for a gas?
$Re_{Liq} > 0.01$ or $Re_{Gas} > 1$	no	Is the Reynolds number within the valid range for j-factor correlations?
β > 0.3	Undefined	Are multiple steady states possible?
(C _b - C _s)/C _b > 5%	yes!	Does external diffusion limit reaction rate?
(C _b - C _s)/C _b > 50%	yes!	Does external diffusion control reaction rate?
T _b - T _s > 1 K	Undefined	Is the external temperature gradient significant?
T _s - T _c > 1 K	Undefined	Is the internal temperature gradient significant?
η < 0.95	Undefined	Does pore diffusion limit reaction rate?
η < 0.5	Undefined	Does pore diffusion strongly affect reaction rate?
ΔP > 0.2P	no	Is the bed pressure drop greater than 20% of the total pressure?
+ Mears Axial Dispersion	no	Does axial dispersion have a large effect upon rate?
+ Gierman Axial Dispersion	no	Does axial dispersion have a large effect upon rate?
+Sie Wall Effects	no	Do broad radial velocity profiles negatively effect the reactant RTD?
+Mears Radial Interparticle	yes!	Does a radial interparticle heat transport limitation indicate a nonisothermal reactor?

Figure S.13. Results for GradientCheck calculations.

S.9. Methanol Self-coupling Data

Figure S.14. (a) Time on stream data showing methyl formate production from npAu during gas-phase oxidative self-coupling of methanol. (b) Time on stream data showing methyl formate production from Ag/SiO₂ during gas-phase oxidative self-coupling of methanol. (c) Carbon selectivity of methanol self-coupling during gas-phase oxidative self-coupling of methanol on npAu. (d) Carbon selectivity of methanol self-coupling during gas-phase oxidative self-coupling of methanol on Ag/SiO₂. Reaction Conditions: 143 kPa (2.9 kPa methanol, 1.4 kPa O₂, 1.4 kPa CH₄, balance He), 448 K, npAu mass: 43.3 mg, Ag/SiO₂ mass: 28.5 mg

Figure S.15. Methanol reaction order in the oxidative coupling of methanol on npAu. Reaction conditions: 143 kPa (1.4-5.7 kPa methanol, 1.4 kPa O₂, 1.4 kPa CH₄, Balance He), 448K, npAu mass; 43 mg.

S.10 DMF Apparent Activation Energy and Reaction Orders

Figure S.16. Arrhenius plots for DMF formation rates over npAu (diamonds), 1:15 AgAu/SiO₂ (triangles), Pd/SiO₂ (circles) and 1:10 PdAu/SiO₂ (squares). Reaction conditions: 143 kPa total pressure (2.85 kPa methanol, 1.4 kPa O₂, 0.0086 kPa DMA, balance He), 373-448 K, npAu mass ; 12.9 mg (GHSV: 170000 h⁻¹); 1:15 AgAu/SiO₂ mass; 6.7 mg (GHSV: 175000 h⁻¹); Pd/SiO₂ mass; 20.1 mg (GHSV: 20700 h⁻¹); 1:10 PdAu/SiO₂ mass; 5.4 mg (GHSV: 197000 h⁻¹); each diluted with Si-xerogel.

Figure S.17. Reaction orders of DMA (circles), O₂ (red triangles, color to distinguish in data overlap), and methanol (squares). Reaction conditions: 143 kPa (2.9-5.9 kPa methanol, 1.4-4.3 kPa O₂, 0.019-0.094 kPa DMA, Balance He), 398K, npAu mass; 0.029 g (GHSV: 170000 h⁻¹).

Figure S.18. Reaction orders of DMA (circles), O_2 (triangles; gray at lower O_2 pressures and black at higher O_2 pressures on the same loading of catalyst weeks apart from one another), and methanol (squares). Reaction conditions: 141 kPa (2.85-14.27 kPa methanol, 0.72-28.54 kPa O_2 , 0.019-0.156 kPa DMA, Balance He), 398 K, 1:15 AgAu/SiO₂ mass; 0.0093 g diluted in in Si-xerogel (approximately twice the catalyst mass) (GHSV: 175000 h⁻¹). Catalyst and Si-xerogel diluent sieved to 180µm-250 µm.

Figure S.19. Reaction orders of DMA (circles), O₂ (triangles), and methanol (squares) over Pd/SiO₂. Reaction conditions: 141 kPa (1.00-5.70 kPa methanol, 1.10-8.56 kPa O₂, 0.014-0.156 kPa DMA, Balance He), 398 K, Pd/SiO₂ mass; 0.0140-0.0201 g diluted in Si-xerogel (approximately equal the catalyst mass) mg (GHSV: 207000 h⁻¹). Catalyst and Si-xerogel diluent sieved to 180µm-250 µm.

S.11. CO₂ Apparent Activation Energy and Reaction Orders

Figure S.20. (a) Arrhenius plots for CO₂ formation rates over npAu (diamonds), 1:15 AgAu/SiO₂ (triangles), Pd/SiO₂ (circles) and 1:10 PdAu/SiO₂ (squares). Reaction conditions: 143 kPa total pressure (2.85 kPa methanol, 1.4 kPa O₂, 0.0086 kPa DMA, balance He), 373 K-448 K, AgAu/SiO₂ mass; 6.7 mg (WHSV: 175000 h⁻¹); Pd/SiO₂ mass; 20.1 mg (WHSV: 207000 h⁻¹); PdAu/SiO₂ mass; 5.4 mg (WHSV: 197000 h⁻¹); each diluted with Si-xerogel. (b)-(e) Reaction orders of DMA (circles), O₂ (triangles), and methanol (squares). ((b):npAu, (c):AgAu/SiO₂, (d): PdAu/SiO₂, (e): Pd/SiO₂). Reaction conditions: 141-143 kPa (1.00-14.27 kPa methanol, 0.72-28.54 kPa O₂, 0.014-0.156 kPa DMA, Balance He), 398K, npAu mass; 0.029 g. 1:15 AgAu/SiO₂ mass; 0.0093 g, 1:10 PdAu/SiO₂ mass; 0.0054-0.0058 g, Pd/SiO₂ mass; 0.0140-0.0201 g, diluted in in Si-xerogel (approximately twice the catalyst mass). Catalyst and Si-xerogel diluent sieved to 180µm-250µm.

Table S.2. Summary of apparent activation energies and reaction orders					
Catalyst	CO ₂		CO ₂ reaction	on orders	
	Formation E _{app} / kJ mol ⁻¹	СН ₃ ОН	O ₂	DMA	DMF
npAu	26 ± 11	-1.04 ± 1.88	1.03 ± 0.15	0.77 ± 0.47	-
1:15 AgAu/SiO ₂	16 ± 4	1.37 ± 0.85	2.25 ± 0.77	-0.04 ± 0.62	-
Pd/SiO ₂	29 ± 31	0.00 ± 0.02	$\begin{array}{c} 1.88 \pm \\ 0.18 \end{array}$	0.09 ± 0.04	-
1:10 PdAu/SiO ₂	63 ± 5	-0.18 ± 0.25	1.39 ± 0.34	-0.30 ± 0.27	-

S.12. Example Transient Data with Long Time on Stream

Figure S.21. (a) Long transients observed as a result of methanol and DMA concentration changes. (b) Selectivity during the transients is variable; DMF (squares), CO₂ (circles), formaldehyde (triangles), methyl formate (diamonds). Reaction conditions: 143 kPa (2.9-14.3 kPa methanol, 1.4 kPa O₂, 0.17-0.86 kPa DMA, 1.4 kPa CH₄, Balance He), 448 K, npAu mass: 43.3 mg.

Figure S.22. DMF co-fed off/on. Reaction conditions: 143 kPa (2.9 kPa methanol, 1.4 kPa O₂, 0.065 kPa DMA, 1.4 kPa CH₄, 0.0088 kPa DMF Balance He), 398K, npAu mass; 29 mg.

Figure S.23. DMF reaction order on 1:10 PdAu/SiO₂. Reaction conditions: 143 kPa (2.9 kPa methanol, 1.4 kPa O₂, 0.17-0.86 kPa DMA, 1.4 kPa CH₄, 0.00015-0.00084 kPa DMF, balance He), 398 K, 1:8 PdAu/SiO₂ mass: 6.0 mg.

Figure S.24. DMF rate and selectivity of Pd/SiO₂, 1:10 PdAu/SiO₂, and 1:15 PdCu/SiO₂ with data for 1:12 PdCu/SiO₂ being shown at two different temperatures. Reaction Conditions: 141 kPa (2.82 kPa methanol, 1.41 kPa O₂, 0.085 kPa DMA, 0.141 kPa CH₄, Balance He), 398 K and 428 K, Catalyst mass; 0.005-0.015 g diluted in Si-xerogel (approximately twice the catalyst mass). Catalyst and Si-xerogel diluent sieved to 180µm-250µm.

S.15 DFT Computational Inputs

VASP INCAR Files (SI)

INCAR for Surface Calculation
ENAUG = 750.000000
ENCUT = 500.000000
POTIM = 0.200000
SIGMA = 0.200000
EDIFF = 1.00e-08
EDIFFG = -2.00e-02
ALGO = normal
GGA = PE
IBRION = 1
ICHARG = 1
ISIF = 2
ISMEAR = 0
ISTART = 1
ISYM = 0
KPAR = 1
LMAXMIX = 6
LORBIT = 10
NELM = 100
NSW = 0
IVDW = 15
$VDW_{50} = 1.000000$
$VDW_{50} = 0.939481$
$VDW_A = 0.383730$ $VDW_A = 4.806885$
$VDW_A2 = 4.000005$
$I \Delta SPH - TRUE$
LCHARG = FALSE
LWAVE = FALSE
LREAL = FALSE
IDIPOL = 3
LDIPOL= .TRUE.
INCAR for Hessian Calculation
ENAUG = 750.000000
ENCUT = 500.000000
POTIM = 0.0050000
SIGMA = 0.200000
EDIFF = 1.00e-08
ALGO = normal
GGA = PE
IBRION = 5
NFREE = 4
ICHARG = 1
ISIF = 2
ISMEAR = 0
ISTART = 1
ISYM = 0

KPAR = 1	
LMAXMIX = 6	
LORBIT = 10	
NELM = 100	
NSW = 0	
IVDW = 13	
$VDW_S6 = 1.000000$	
$VDW_S8 = 0.959481$	
$VDW_A1 = 0.385750$	
$VDW_A2 = 4.806885$	
NCORE = 2	
LASPH = .TRUE.	
LCHARG = .FALSE.	
LWAVE = .FALSE.	
LREAL = .FALSE.	
IDIPOL=	3
LDIPOL=.TRUE.	

VASP POTCAR Files (SI)

Au	PAW_PBE Au 04Oct2007
Pd	PAW_PBE Pd 04Jan2005
Ag	PAW_PBE Ag 02Apr2005
0	PAW_PBE O 08Apr2002
С	PAW_PBE C 08Apr2002
Н	PAW_PBE H 15Jun2001
Ν	PAW_PBE N 08Apr2002

VASP KPOINTS Files (SI)

KPOINTS for Bulk Calculations
0
Gamma
15 15 15
0 0 0
KPOINTS for Surface Calculations
0
Gamma
551
000

S.16 References

- 1. Y. Xu and M. Mavrikakis, J. Phys. Chem. B, 2003, 107, 9298-9307.
- 2. J. Kim, E. Samano and B. E. Koel, *Surface Science*, 2006, **600**, 4622-4632.
- 3. J. L. C. Fajín, M. N. D. S. Cordeiro and J. R. B. Gomes, *The Journal of Physical Chemistry C*, 2007, **111**, 17311-17321.
- 4. L. C. Wang, M. L. Personick, S. Karakalos, R. Fushimi, C. M. Friend and R. J. Madix, *Journal of Catalysis*, 2016, **344**, 778-783.
- 5. C. T. Campbell, *Surface Science*, 1985, **157**, 43-60.
- 6. M. Gajdoš, A. Eichler and J. Hafner, *Surface Science*, 2003, **531**, 272-286.
- 7. M. Yan, Z.-Q. Huang, Y. Zhang and C.-R. Chang, *Phys. Chem. Chem. Phys.*, 2017, **19**, 2364-2371.
- 8. P. Junell, K. Honkala, M. Hirsimäki, M. Valden and K. Lassonen, *Surface Science*, 2003, **546**, L797-L802.
- 9. D.-J. Liu and J. W. Evans, *Phys. Rev. B*, 2014, **89**, 205406.
- 10. D. A. Hickman, J. C. Degenstein and F. H. Ribeiro, *Current Opinion in Chemical Engineering*, 2016, **13**, 1-9.