Electronic Supplementary Information

Natural iron-rich tourmalines as effective catalysts for the heterogeneous and homogeneous activation of HCO₃-/H₂O₂ to achieve the degradation of typical dyes

Huichao He,^{a, b} Jinyu Wen,^d Qiwen Chen,^b Hai Yu,^c Kun Liu,^c Tao Han,^b Xiaoyan Liu,^b Gaili Ke,^b* Yutong Li ^c* and Huaming Yang^a*

^aEngineering Research Centre of Nano-Geomaterials of the Ministry of Education, China University of Geosciences, Wuhan, 430074, China.

^bSchool of Metallurgy and Materials Engineering, Chongqing University of Science and Technology. Chongqing 401331, China.

^cChongqing Research Academy of Environmental Sciences, Chongqing 401147, China. ^dState Key Laboratory of Environmental Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.

Fig. S1 Typical SEM image of (a) Low-Fe TM, (b) Mg-TM and (c) Li-TM.

Element	at.%	wt.%
0	62.11	50.48
Si	13.95	19.90
В	7.18	3.94
С	5.65	3.45
Fe	4.98	14.12
Mg	3.22	3.98
Na	2.05	2.39
Ca	0.74	1.50
Κ	0.12	0.24

 Table S1 EDS detecting results of High-Fe TM.

Element	at.%	wt.%
0	59.11	48.22
С	16.22	9.93
Ca	10.25	20.95
Si	5.89	8.43
В	4.10	2.26
Fe	2.89	8.23
Na	0.83	0.97
Mg	0.56	0.69
K	0.16	0.32

 Table S2 EDS detecting results of Low-Fe TM.

Oxide species	Content
SiO ₂	40.13%
B_2O_3	8.55%
Al ₂ O ₃	40.26%
CaO	0.93%
MgO	8.72%
K ₂ O	0.50%
Na ₂ O	1.96%
TiO ₂	0.63%
Li ₂ O	0.006%

 Table S3 XRF detecting results of Mg-TM.

Oxide species	Content
SiO ₂	36.72%
B_2O_3	9.72%
Fe ₂ O ₃	4.77%
Al ₂ O ₃	31.08%
CaO	0.99%
MgO	8.71%
Na ₂ O	1.90%
TiO ₂	0.76%
Li ₂ O	0.30%

Table S4 XRF detecting results of Li-TM

Fig. S2 XRD pattern of Mg-TM.

Fig. S3 The TOC retention rate of High-Fe TM/KHCO₃/H₂O₂/dye system before and after 120 min of degradation.

Fig. S4 The degradation rate of dye with different concentrations in High-Fe $TM/KHCO_3/H_2O_2$: (a) RhB, (b) MB and (c) MO.

Fig. S5 The photographs of High-Fe TM after the degradation reactions and thermal desorption.