Selectivity-Controllable Hydrogen Transfer Reduction of α, β-Unsaturated

Aldehydes Over the High-Entropy Catalysts

Ziling Liu, Jipeng Wang, Xiaoqian Gao, Yadong Bi*, Chen Guo and Xinli Tong*

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China; Tel: +86-22-60214259; E-mail: tongxinli@tju.edu.cn, tongxli@sohu.com (X. T.) or ease cloud801@sina.com (Y. B.).

Supporting Information

1. The characterization of catalysts

Figure S1. XRD patterns of the different solid catalysts

Table S1 . The BET surface area and pore size of different catalysts	
---	--

Catalyst	BET Surface area (m ² •g ⁻ 1)	Pore volume (cm ³ •g ⁻¹)	Average pore diameter(Å)
CuCoAlNiFeO _x	66.78	0.1217	42.21
CuCoAlNiFe-250R	46.43	0.1005	44.22
CuCoAlNiFe-350R	47.95	0.1071	45.91
CuCoAlNiFe-450R	57.56	0.1211	49.56
CuCoAlNiFe-550R	37.43	0.09303	51.82

Figure S2. The N₂ adsorption-desorption isotherm and pore size distribution of CuCoAlNiFeO_X (left) and CuCoAlNiFe-250R (right)

Figure S3. The SEM images of the CuCoAlNiFeO_X catalyst (a, b) and CuCoAlNiFe-250R catalyst (c, d)

Figure S4. The SEM images of CuCoAlNiFe-250R (a), CuCoAlNiFe-350R (b), CuCoAlNiFe-450R (c), CuCoAlNiFe-550R (d) , and CuCoAlNiFe-650R (e)

Figure S5. EDX results of CuCoAlNiFeO_X catalyst (a) and the CuCoAlNiFe-250R catalyst (b)

Figure S6. The XPS spectra of the O, Al, Co, Cu, Fe or Ni element in CuCoAlNiFeO_X catalyst

Figure S7. The XPS spectra of O 1s and Cu 2p of CuCoAlNiFeO_X catalyst and the CuCoAlNiFe-250R catalyst

3. The used analysis conditions and the obtained GC spectra of products

The analysis condition of gas chromatography with a FID detector is presented as follows: The used capillary column is HP-5MS column ($30m \times 0.25mm \times 0.25\mu m$); Detector temperature: 250 °C; Injection temp erature: 220 °C; Carrie gas: N₂ with the 1.0 mL/min of rate.

In addition, the qualitative analyses of products were conducted with the Aglient 6890/5973 GC-MS equipped with the HP-5MS capillary column.

Figure S8. The GC spectrum for the reaction of furan-2-acrolein using the CuCoAlNiFeO_X solid catalyst

Figure S9. The GC-MS data for the reaction of furan-2-acrolein with the CuCoAlNiFeO_X catalyst

Figure S10. GC spectrum and GC-MS result for the reaction of furan-2-acrolein with CuCoAlNiFe-250R catalyst