Supporting Information:

Molecular palladium catalyst enabling efficient electrochemical C-C bond cleavage within lignin model compound

Peidong Ren,^a Lei Shi,^a Ziwang Kan,^a Jiaxiao Bai,^a Yunyi Liu,^a Shucheng Yang,^a Siqi Li^{*,a} and Song Liu^{*,a}

^a College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China

To whom correspondence should be addressed. Email: <u>lisiqi@nefu.edu.cn</u> (S. Li) and <u>carlosliusong@nefu.edu.cn</u> (S. Liu).

Table of Contents

Fig. S1. SEM image of acid-washed CNTs before loading TCP-Pd.

Fig. S2. Raman spectra of TCP-Pd/CNTs and CNTs and the I_d/I_g of TCP-Pd/CNTs.

Fig. S3. The concentration standard curves of Pd element.

Fig. S4. Image of electrochemical test instrument.

Fig. S5. The GC-FID spectra of the 2-phenoxy-1-phenylethanol and its electrochemical oxidation products.

Fig. S6. The concentration standard curves of 2-phenoxy-1-phenylethanol and its electrochemical oxidation products.

Fig. S7. The instrument to detect the reaction gas phase product and the detection of the CO_2 .

Table S1. Comparison of performances of TCP-Pd/CNTs with some typical thermocatalytic and photocatalytic systems for the oxidative cleavage of 2-phenoxy-1-phenylethanol.

References

Fig. S1. SEM image of acid-washed CNTs before loading TCP-Pd.

Fig. S2. (a) Raman spectra of TCP-Pd/CNTs and CNTs. (b) The I_d/I_g of TCP-Pd/CNTs.

Fig. S3. The concentration standard curves of Pd element.

Fig. S4. Image of electrochemical test instrument.

Fig. S5. The GC-FID spectra of the 2-phenoxy-1-phenylethanol and its electrochemical oxidation products. Mesitylene was used as internal standard.

Fig. S6. The concentration standard curves of 2-phenoxy-1-phenylethanol and its electrochemical oxidation products.

Fig. S7. (a)The instrument to detect the reaction gas phase product. (b) Detection of the CO₂.

) (он 4		o- (١	он 7	() 8 8
Catalyst	Reaction conditions	Con. 1(%)	Product yield(%)							Rof
			2	3	4	5	6	7	8	Kei.
TCP-Pd/CNTs	RT, air, 15mA, TBHP, 5h	99		32	18	15	5			This work
LCNa	120°C, TBHP, 24h	91.8	10.7	0.2	18.3			45.3	0.2	1
Pd/CeO ₂	185°C, 0.1MPa O ₂ , 24h	64	12		48			0.03		2
Au ₁ -Pd _{1.5} - CTFs	160°C, 0.5MPa O ₂ , 4h	96	2		49	17		15		3
mpg-C ₃ N ₄	455nm LED, 0.1MPa O ₂ , 10h	96	7	51				21	30	4
BiVO ₄	AM 1.5 sunlight, 2.0V vs.Ag/AgCl, 20h	30	10	12	5					5

Table S1. Comparison of performances of TCP-Pd/CNTs with some typical thermocatalytic and photocatalytic systems for the oxidative cleavage of 2-phenoxy-1-phenylethanol.

Reference

- 1. S. K. Hanson, R. T. Baker, J. C. Gordon, B. L. Scott and D. L. Thorn, *Inorg. Chem.*, 2010, **49**, 5611-5618.
- 2. W. Deng, H. Zhang, X. Wu, R. Li, Q. Zhang and Y. Wang, Green Chem., 2015, 17, 5009-5018.
- 3. L. Zhao, S. Shi, G. Zhu, M. Liu, J. Gao and J. Xu, Green Chem., 2019, 21, 6707-6716.

- 4. H. Liu, H. Li, J. Lu, S. Zeng, M. Wang, N. Luo, S. Xu and F. Wang, ACS Catal., 2018, 8, 4761-4771.
- 5. T. Li, J. Y. Mo, D. M. Weekes, K. E. Dettelbach, R. P. Jansonius, G. M. Sammis and C. P. Berlinguette, *ChemSusChem*, 2020, **13**, 3622-3626.