Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Selectivity controlled synthesis of furan-ring nitrogenous compounds from 5-hydroxymethylfurfural, ammonia and hydrogen peroxide

Xuan Gao^a, Zhihui Li * ^{a, b}, Dongsheng Zhang ^a, Xinqiang Zhao ^a, and Yanji Wang* ^a
a. Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, China
b. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
*E-mail: yjwang@hebut.edu.cn (Yanji Wang);

*E-mail: lizhihui425@hebut.edu.cn (Zhihui Li)

Contents

The quantitative formulae for the HMF ammoxidation	S2
Fig. S1 GC-MS spectra of products	S3
Fig. S2 GC spectra of products	S4
Fig. S3 FT-IR spectra of products	S5
Fig. S4-9 NMR spectra of products	S7-9
Fig. S10 XRD patterns of fresh and used Cu(OAc) ₂ /TS-1	S10
Fig. S11 FT-TR spectra of the fresh and used $Cu(OAc)_2/TS-1$	S11
Fig. S12 Pore size distribution of Cu(OAc) ₂ /TS-1 and TS-1	S12
Table S1 Catalytic performance for the synthesis of HMFA from HMFO	S13
over 10%Cu(OAc) ₂ /TS-1	

Table S2 The physicochemical property of Cu(OAc) ₂ /TS-1 and TS-1	S14
Table S3 ICP results and catalytic activity of 10%Cu(OAc) ₂ /TS-1	S15
Table S4 Reaction performance comparison of different methods for the	S16
synthesis of HMFC.	

1. The quantitative formulae for the HMF ammoxidation

The formula for calculating HMF conversion, HMFO conversion, as well as HMFO, HMFC and HMFA yields are provided as follows:

$$HMF \ conversion = 1 - \frac{moles \ of \ HMF \ remained}{moles \ of \ HMF \ in \ the \ feed} \times 100\%$$
(1)

$$HMFO \ yield = \frac{moles \ of \ HMFO \ produced}{moles \ of \ HMF \ in \ the \ feed} \times 100\%$$
(2)

$$HMFO \ conversion = 1 - \frac{moles \ of \ HMFO \ remained}{moles \ of \ HMFO \ in \ the \ feed} \times 100\%$$
(3)

$$HMFC \ yield = \frac{moles \ of \ HMFC \ produced}{moles \ of \ HMFO \ in \ the \ feed} \times 100\%$$
(4)

$$HMFA \ yield = \frac{moles \ of \ HMFA \ produced}{moles \ of \ HMFO \ in \ the \ feed} \times 100\%$$
(5)

2. GC-MS spectra of products

Fig. S1 GC-MS spectra of products.

3. GC spectra of products

Fig. S2 GC spectra of products.

4. FT-IR spectra of products

Fig. S3 FT-IR spectra of products: (A)HMFO; (B)HMFC; (C)HMFA.

5. NMR spectra of products

Fig. S5 ¹³C NMR of HMFO.

Fig. S6 ¹H NMR of HMFC.

Fig. S9¹³C NMR of HMFA.

6. XRD patterns of catalysts

Fig. S10 XRD patterns of the fresh and used $Cu(OAc)_2/TS-1$.

7. FT-TR spectra of the fresh and used $Cu(OAc)_2/TS-1$

Fig. S11 FT-TR spectra of the fresh and used Cu(OAc)₂/TS-1.

8. Pore size distribution of $Cu(OAc)_2/TS-1$ and TS-1

Fig. S12 Pore size distribution of $Cu(OAc)_2/TS-1$ and TS-1.

9. Catalytic performance for the synthesis of HMFA from HMFO over 10%Cu(OAc)₂/TS-1

Table S1 Catalytic performance for the synthesis of HMFA from HMFO over

10%Cu(OAc) ₂ /TS-1					
Entry	Conditions	X_{HMFO} / %	$Y_{HMFA}/\%$	$Y_{HMFC}/\%$	
1	Isopropanol (10 mL), 2 h	12.5	0	12.5	
2	Isopropanol (10 mL)+ acetonitrile (0.1 mmol), 1 h	84.9	62.6	21.7	

Reaction conditions: HMFO 1 mmol, 10%Cu(OAc)₂/TS-1 0.25 mmol, 95 °C.

Table S2 The physicochemical property of Cu(OAc) ₂ /TS-1 and TS-1.				
$S_{BET} \left(m^2 g^{-1}\right)$	V pore (cm ³ g ⁻¹)	D pore (nm)		
475.1113	0.173274	6.8356		
359.4973	0.149491	6.2599		
	The physicochemical problem $\frac{S_{BET} (m^2 g^{-1})}{475.1113}$ 359.4973	The physicochemical property of $Cu(OAc)_2/TS-1$ SBET (m ² g ⁻¹)V pore (cm ³ g ⁻¹)475.11130.173274359.49730.149491		

10. The physicochemical property of $Cu(OAc)_2/TS-1$ and TS-1

11. ICP results and catalytic activity of 10%Cu(OAc)₂/TS-1

Catalyst	ICP Cu content (%)	Cu(OAc) ₂ content (%)	X_{HMFO} / %	$Y_{HMFC}/\%$
Fresh	3.11	9.77	100	92.8

Table S3 ICP results and catalytic activity of 10%Cu(OAc)₂/TS-1.

Table S4 Reaction performance comparison of different methods for the synthesis of HMFC.					
No.	Catalyst	Conditions	Conversion	HMFC	Ref.
			(%)	Yield (%)	
1	β -MnO ₂	NH ₃ aq. (10 equiv), 0.5 MPa	76	25	[11]
		O ₂ , DMF, 100 °C, 1 h			
2	Hac-modified	$120~\mu L$ NH $_3$ aq., 0.3 MPa $O_2,$	95	87.4	[12]
	MnO _x	CH ₃ CN, 60 °C, 3 h			
3	Fe-OMS-2	$0.7 \text{ mmol} (\text{NH}_4)_2 \text{C}_2 \text{O}_4, 0.4$	100	98	[13]
		MPa O ₂ , Benzonitrile, 105 °C,			
		12 h			
4	ZnCl ₂	NH_2OH (1.5 equiv),	100	65.6	[18]
		Methanol, 55 °C, 30 min			
5	ZnCl ₂	ZnCl ₂ ·2NH ₂ OH (0.75 equiv),	100	100	[18]
		Methanol, 100 °C, 20 min			
6	Cu(OAc) ₂ /TS-1	CH ₃ CN, 60 °C, 3 h	100	92.8	This
					work

12. Reaction performance comparison of different methods for the synthesis of HMFC