Supplementary material

Interface engineering towards overall water electrolysis upon NiCo₂O₄/NiMo hybrid catalysts

Shan Gao,^a Lijing Wang,^b Xuxin Kang,^a Linxia Wang,^c Xiangmei Duan,^a and Weichao Wang^{b,*}
^a School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
^b College of Electronics Information and Optical Engineering, Nankai University, Tianjin, 300071, China

^c Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, China * Corresponding Author

E-mail: weichaowang@nankai.edu.cn

Fig. S1 The Bader charge of Co and Ni sites at the $NiCo_2O_4/NiMo-xO$ (x=4, 8) interface.

Fig. S2 The configurations for H adsorbed on Ni(111) and NiMo(111) with the adsorption site of Ni-h and NiMo-h. The corresponding Gibbs free energies of hydrogen adsorption (ΔG_{*H}) are labeled below the picture, in the unit of eV.

Fig. S3 The configurations for H adsorbed on Ni_5Mo-4O cluster with adsorption sites of Ni-t, Mo-t, NiMo-h, and Ni-h. The subscript 1 in Ni-t₁ means this Ni atom is closer to the Mo atom

than that of Ni-t₂. The corresponding ΔG_{*H} is labeled below the picture in the unit of eV.

Fig. S4 The configurations for H adsorbed on Ni₅Mo-8O cluster with adsorption sites of Ni-t and Mo-t. The subscript 1 in Ni-t₁ means this Ni atom is closer to the Mo atom than that of Ni-t₂.

The corresponding ${}^{\Delta G}{}_{*H}$ is labeled below the picture in the unit of eV.

.

Fig. S5 Correlation between Gibbs free energies of hydrogen adsorption (${}^{\Delta G}*H$) and d band center (${}^{\mathcal{E}}d$) of the adsorption sites.

Fig. S6 Free energy diagram of OER process on $NiCo_2O_4/NiMo$ hybrid catalyst with three different adsorption configurations for ^{*}OOH.

Fig. S7 Free energy diagram of OER process on $NiCo_2O_4/Ni_5Mo$ -80. The active center Co of $NiCo_2O_4$ forms a Co-Ni bond with the Ni of NiMo cluster at the interface. The OER overpotential is 1.02 V.

Fig. S8 Free energy diagram of OER process on $NiCo_2O_4/Ni_5Mo$ -80. The active center Co of $NiCo_2O_4$ forms a Co-O bond with the O of Ni_5Mo -80 cluster at the interface. The OER overpotential is 1.04 V.

Fig. S9 Free energy diagram of OER process on $NiCo_2O_4/Ni_5Mo$ -80. The active center Co of $NiCo_2O_4$ forms two Co-O bonds with the O of Ni_5Mo -80 cluster at the interface. The Mo atom of Ni_5Mo -80 at the interface strongly adsorbs intermediates *O and *OH. The OER overpotential increases to 2.45 V.