Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Materials

Exploration of the active sites on the Rh-In₂O₃ catalyst for the semi-

hydrogenation of acetylene: A theoretical study

Kaihang Sun,^a Rui Zou,^a Chenyang Shen^a and Chang-jun Liu^{*ab}

a. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

b. Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, China

Fig. S1 Configuration of $In_2O_3(111)$ model

Fig. S2 Configurations of (a-d) four potential sites of Rh single atom and (e) the comparison of surface formation energies

Fig. S3 The potential energy and temperature of the Rh_1/In_2O_3 model during the AIMD simulation

 $Fig. \ S5 \ Adsorption \ and \ dissociation \ of \ H_2 \ molecule \ over \ the \ Rh_1/In_2O_3_Ov \ site \ with \ and \ without \ C_2H_2 \ adsorption$

Fig. S7 Configurations of the intermediates involved acetylene hydrogenation over the Rh_1/In_2O_3 _Ov site

 $Fig. \ S8 \ Configurations \ of the intermediates involved \ acetylene \ hydrogenation \ over \ the \ Rh_4/In_2O_3_Ov \ site$

Fig. S9 Configurations of the intermediates involved acetylene hydrogenation over the Rh_4/In_2O_3 _ Rh_4 site