Supporting Information

Efficient Co/NSPC Catalyst for Selective Hydrogenation of Halonitrobenzenes and Mechanistic Insight

Jiahui Xu^{#a}, Xianlang Chen^{#b}, Jia-qi Bai^{a,c*}, Zhengan Miao^c, Yuan Tan^d, Nannan Zhan^d, Huangfei Liu^a, Mei Ma^a, Mengdie Cai^a, Qin Cheng^a, Song Sun^a

^aSchool of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 Anhui, People's Republic of China

^bEngineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China

^cSennics Co., Ltd. Anhui, 1111 West Cuihuliu Road, Circulation Economical Industrial Park, Tongling 244000, P. R. China

^dHangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, P. R. China

[#]These authors contributed equally

E-mail addresses: jiaqibai@ahu.edu.cn (J. -q. Bai)

Supporting Figures and Tables

Scheme S1.The schematic illustration of the preparation of 5%Co/NSPC-800.

Scheme S2. The possible reaction pathway for *p*-CNB hydrogenation.

Figure S1. The effect of non-noble metal on the catalytic performance for p-CNB hydrogenation. Reaction conditions: p-CNB 0.5 g, catalyst 50 mg, methanol 30 mL, H₂ pressure 3 MPa, temperature 353 K, reaction time 3 h.

Figure S2. The XRD patterns of 5%Co/NSPC-800 before and after reaction.

Figure S3. (a~b) The SEM images of 5%Co/NSPC-800, (c) 5%Co/NPC-800, (d)

5%Co/SPC-800 and (e) particle size distribution of 5%Co/NSPC-800.

Figure S4. The HRTEM images of 5%Co/NSPC-800.

Figure S5. (a) The TEM images of 5%Co/NPC-800, (b~d) HRTEM images of 5%Co/NPC-800, (e) particle size distribution of 5%Co/NPC-800 and (f~j) EDX mapping of 5%Co/NPC-800, C, O, N and Co.

Figure S6. (a) The TEM images of 5%Co/SPC-800, (b~c) HRTEM images of 5%Co/SPC-800, (d) particle size distribution of 5%Co/SPC-800 and (e~i) EDX mapping of 5%Co/SPC-800, C, O, S and Co.

Figure S7. The H₂-TPR profile of 5%Co/NSPC-800, 5%Co/NPC-800 and 5%Co/SPC-

800.

Figure S8. The XRD patterns of 5%Co/NSPC-800 before and after acid leaching.

Figure S9. The H₂-TPD profile of 5%Co/NSPC-800, 5%Co/NPC-800 and 5%Co/SPC-800.

Figure S10. The *in-situ* DRIFTS of *p*-CNB over 5%/Co/NSPC-800 under 1 MPa H₂

and

60~140

°C.

Cl—	$-CNB$ $NO_2 \xrightarrow{+H_2}$ Catalyst	- CI \longrightarrow	$-NH_2 + $	$-NH_2 + \sqrt{N}$	B NO ₂
1		F	Se	electivity /%	
Entry	Catalyst	Conversion /%			
1	SPC-800	0.71	6.8	93.2	< 0.1
2	NPC-800	0.88	74.1	< 0.1	25.9
3	NSPC-800	2.2	>99.9	< 0.1	< 0.1
4	5%Co/NSPC-800	34.0	>99.9	< 0.1	< 0.1
5	5%Co/NPC-800	17.8	86.9	< 0.1	13.1
6	5%Co/SPC-800	2.1	64.7	< 0.1	35.3
7	5%Co/PC-800	2.7	78.5	< 0.1	21.5
8	5%Co/SiO ₂	5.2	3.1	79.4	17.5

Table S1. The effect of support on the catalytic performance for *p*-CNB hydrogenation.

temperature	353	Κ,	reaction	time	3	h.
-------------	-----	----	----------	------	---	----

Cl—	H_2 H_2 H_2 $Catalyst$			NH ₂ +	NO ₂
		Commission	Se	lectivity /%	
Entry	Catalyst	/%			
1	1%Co/NSPC-800	10.3	85.3	< 0.1	14.7
2	2%Co/NSPC-800	20.7	92.7	< 0.1	7.3
3	3.5%Co/NSPC-800	27.5	97.6	< 0.1	2.4
4	5%Co/NSPC-800	34.0	>99.9	< 0.1	< 0.1
5	7.5%Co/NSPC-800	15.8	99.1	0.9	< 0.1

Table S2. The effect of Co loading amount on catalytic performance for p-CNBhydrogenation.

Reaction conditions: p-CNB 0.5 g, catalyst 50 mg, methanol 30 mL, H₂ pressure 3 MPa,

temperature	353	К,	reaction	time	3	h.
-						

 Table S3. The effect of different metal on catalytic performance for *p*-CNB

hydrogenation.

Cl—	NO ₂ +H ₂ Catalyst		NH ₂ +	NH ₂ +	NO ₂
			Se	lectivity /%	
Entry	Catalyst	Conversion /%			
1	5%Fe/NSPC-800	1.5	37.8	< 0.1	61.2
2	5%Co/NSPC-800	34.0	>99.9	< 0.1	< 0.1
3	5%Ni/NSPC-800	5.6	78.1	0.9	21.0
4	5%Cu/NSPC-800	3.1	64.2	< 0.1	35.8

temperature 353 K, reaction time 3	h.
------------------------------------	----

CI	NO ₂ HI ₂ Catalyst		NH2+	VH ₂ +	NO ₂
			Se	lectivity /%	
Entry	React time/ h	Conversion /%		NH ₂	
1	1.5	17.7	>99.9	< 0.1	< 0.1
2	3	34.0	>99.9	< 0.1	< 0.1
3	6	59.8	>99.9	< 0.1	< 0.1
4	9	82.1	>99.9	< 0.1	< 0.1
5	12	100	>99.9	< 0.1	< 0.1
6	15	100	>99.9	< 0.1	< 0.1

 Table S4. The time course over 5%Co/NSPC-800 for *p*-CNB hydrogenation.

temperature	353	Κ,	reaction	time	0-15	h.
round a second	000	,	10000000		0 10	

Cl	$NO_2 \xrightarrow{+H_2}$		$H_2 + $	IH ₂ +	→NO ₂
			Se	lectivity /%	
Entry	React time/ h	Conversion /%		NH ₂	
1	1.5	10.0	84.7	< 0.1	15.3
2	3	17.8	86.9	< 0.1	13.1
3	6	33.5	91.4	< 0.1	8.6
4	9	46.8	93.4	< 0.1	6.6
5	12	60.8	94.8	< 0.1	5.2
6	15	74.6	96.6	< 0.1	3.2
7	18	86.5	97.3	< 0.1	2.7
8	21	100	97.3	< 0.1	2.7
9	24	100	93.5	3.8	2.7

Table S5. The time course over 5%Co/NPC-800 for *p*-CNB hydrogenation.

temperature	353	К,	reaction	time	0-24	h.
-------------	-----	----	----------	------	------	----

Entry Catalyst			ICP-OES			
Ениу	Catalyst	N(wt%)	C(wt%)	H(wt%)	S(wt%)	Co(wt%)
1	2%Co/NSPC-800	-	-	-	-	1.1
2	3.5%Co/NSPC-800	-	-	-	-	2.5
3	5%Co/NSPC-800	6.7	60.3	2.1	1.8	3.5
4	7.5%Co/NSPC-800	-	-	-	-	4.8
5	5%Co/NPC-800	4.7	71.3	1.9	0	3.0
6	5%Co/SPC-800	0	57.1	1.8	3.0	1.4

Table S6. The elemental content of samples obtained by EA and ICP-OES.

Entry	Entry Catalyst		Particle	size /nm	^b Dispersion
	Catalyst	temp./K	XRD	TEM	Co /%
1	2%Co/NSPC-800	773	26.5	-	-
2	3.5%Co/NSPC-800	773	26.8	-	-
3	5%Co/NSPC-800	773	24.5	22.4	6.0
4	7.5%Co/NSPC-800	773	25.7	-	-
5	5%Co/NPC-800	773	25.7	25.0	5.3
6	5%Co/SPC-800	773	26.0	25.2	4.3
7	^a 5%Co/NSPC-800	773	26.9	-	-

 Table S7. The particle size and dispersion of catalysts.

^a After the reaction

b]	Determination	by	CO	adsorption
-----	---------------	----	----	------------

Catalyst	P _{H2} /MPa	T/K	TOF _s ^a /h ⁻¹	TOF /h ⁻¹	Ref.
Co-NSPC-N	1.5	393	123	7 ^b	[1]
Co-NSPC-C	1.5	393	180	6 ^b	[1]
Co-NSPC-S	1.5	393	154	3 ^b	[1]
Co-NSPC-Cl	1.5	393	29	2 ^b	[1]
Co ₁ Cu _{0.30} @CN/SiO ₂	2	393	160	13 ^b	[2]
Co@mesoNC	3	383	42	42	[3]
Co@CN-400	1	333	59	5	[4]
Co-N-C	3	353	36	36	[5]
Co-PC	1	353	108	10	[6]
Co-Phen	1	353	56	3	[6]
Co/N-C-600	1	373	45	5	[7]
Co-NSPC-800	3	353	84	84	[7]
Co/NMC-800	1	353	275	275	[8]
Co800NH ₃	3	353	152	152	[9]
Co-N _x /C-800-ATc	0.35	383	392	392	[10]
Co ₁ @NC (SBA)	1	413	22	22	[11]
Co SAs/NC-800	0.5	393	110	110	[12]
Co SAs/NC	3	383	77	77	[13]
Co SAs/NHPCN	2	373	44	44	[14]
5%Co/SPC-800	3	353	44	2	This work
5%Co/NPC-800	3	353	140	7	This work
5%Co/NSPC-800	3	353	203	12	This work

Table S8. The TOF and TOF_s values of reported effective Co-based catalysts.

^a Calculated based on the amount of surface metal amount. $\text{TOF}_{s}(h^{-1}) = (\text{Converted } p - \text{CNB} \text{ amount (mol)})/(\text{surface metal amount (mol)})/(\text{Time (h)}). surface metal amount (mol) = (total metal amount (mol)) \cdot (1/particle size (nm)). The dispersion of single atom catalyst is considered to be 100%.$

^b Calculated based on the amount of total metal amount. TOF $(h^{-1}) = (Converted p-$

CNB amount (mol))/(total metal amount (mol))/(Time (h))

CI	$H_2 \rightarrow Cl$	NH2+	►NH ₂ +	NO ₂
		Sel	ectivity /%	
Usage time	Conversion /%			
1	16.6	>99.9	< 0.1	< 0.1
2	16.0	>99.9	< 0.1	< 0.1
3	14.9	>99.9	< 0.1	< 0.1
4	14.6	>99.9	< 0.1	< 0.1

Table S9. The reusability experiment over 5%Co/NSPC-800 for p-CNBhydrogenation.

temperature	353	Κ,	reaction	time	3	h.
composation o	000	,	reaction	tiiiite	5	

Entry	<u>reactant</u>	Product	t/h	Conversion /%	Selectivity /%
1			3	40.2	>99.9
I	NO ₂	NH ₂	12	100	>99.9
2			3	37.8	>99.9
2			12	100	>99.9
3	CI	G	3	38.1	>99.9
5	NO ₂	NH ₂	12	100	>99.9
4			3	34.0	>99.9
4		NHa	12	100	>99.9
5	Br NO ₂	Br NH ₂	3	33.8	>99.9
3			12	100	>99.9
C	Br	Br	3	34.9	>99.9
0	NO ₂	NH ₂	12	100	>99.9
-	Br	Br	3	35.2	>99.9
/			12	100	>99.9
Q		NH ₂	3	38.5	>99.9
0			12	100	>99.9
Q	F	F	3	35.8	>99.9
,	NO2	NH ₂	12	100	>99.9

Table S10. The substrate scope over 5%Co/NSPC-800.

Reaction conditions: HNBs 3.2 mmol, catalyst 50 mg, methanol 30 mL, H_2 pressure 3 MPa, temperature 353 K, reaction time 3, 12 or 20 h.

Entry	Cotalvat	Conversion /0/	Peak area /(eV·Counts)		
	Cataryst	Conversion / 76	Co-N _x	Co^0	
1	1%Co/NSPC-800	10.3	750	50	
2	2%Co/NSPC-800	20.7	1370	100	
3	3.5%Co/NSPC-800	27.5	1785	195	
4	5%Co/NSPC-800	34.0	1900	400	
5	7.5%Co/NSPC-800	15.8	1050	300	
6	5%Co/NPC-800	17.8	1000	400	
7	5%Co/SPC-800	2.1	0	280	

Table S11. The relationship between Co^0 and $Co-N_x$ XPS peak area and conversion.

Catalyst		Co 2p	93/2 (eV)				Relative per	centage (%)	
	Co ⁰	Co-O _x	Co-N _x	Co-S _x	-	Co ⁰	Co-O _x	Co-N _x	Co-S _x
1%Co/NSPC-800	778.6	780.5	782.5	778.1		2.0	66.0	31.2	0.8
2%Co/NSPC-800	778.6	780.5	782.5	778.1		2.4	64.3	32.1	1.2
3.5%Co/NSPC-800	778.6	780.5	782.5	778.1		4.0	58.8	36.2	1.0
5%Co/NSPC-800	778.6	780.5	782.5	778.1		7.5	54.9	35.7	1.9
7.5%Co/NSPC-800	778.6	780.5	782.5	778.1		7.6	64.6	26.6	1.2
5%Co/NPC-800	778.6	780.5	782.5	-		11.8	58.8	29.4	0
5%Co/SPC-800	778.6	780.5	-	778.1		12.6	80.7	0	6.7

 Table S12. The binding energy and distribution of surface cobalt atomic chemical state

based on XPS spectra.

Table S13. The Co content of 5%Co/NSPC-800, 5%Co/NPC-800 and 5%Co/SPC-

Entry	Cotalvat -	Co content (wt. %)		
	Catalyst	ICP-OES	XPS	
1	5%Co/NSPC-800	3.5	0.9	
2	5%Co/NPC-800	3.0	0.8	
3	5%Co/SPC-800	1.4	0.5	

800 measured by ICP-OES and XPS.

Catalyst	Shells	CN ^a	<i>R^b</i> / 10 ⁻¹ nm	σ^c / 10 ⁻¹ nm	$\Delta E_0^d / \mathrm{eV}$	$R_{\rm f}^{\rm e}$ / %
	Co-Co	11.0	2.47	0.06	-2.7	
5%Co/NSPC-800	Co-N/O	2.0	2.04	0.06	3.5	0.028
	Co-S	1.8	2.35	0.06	-2.7	
5%Co/NPC-800	Co-Co	11.5	2.49		-0.8	0.020
	Co-N/O	1.2	2.00	0.08	-7.6	0.026
50/C /CDC 000	Co-Co	11.6	2.50	0.06	-1.4	0.028
57600/310-800	Co-S	3.0	2.35	0.06	-0.7	0.028
Co foil	Co-Co	12.0	2.50	0.07	0.5	0.003
СоРс	Co-N	4.0	1.91	0.06	-2.7	0.007
CoS	Co-S	6.0	2.28	0.06	1.8	0.002

Table S14.The EXAFS fits parameters at the Co K-edge of various samples.

^aCoordination number. ^bBond distance. ^cDebye-Waller factor. ^dDifference in the origin of photoelectron energy between the reference and the sample. ^eResidual factor. Fourier

filtering	range:	0.114-0.310	nm.
-----------	--------	-------------	-----

Table S15. The kinetic studies	on the effect of p-CNB	concentration over 59	%Co/NSPC-

800.

Cl—	NO ₂ +H ₂ Cataly	→ Cl	NH2 +	NH ₂ +	NO ₂
Entry	n CNP mass /a	Conversion		Selectivity /%	
Enuy	<i>p</i> -CIND mass /g	/%		NH ₂	
1	0.25	30.4	>99.9	< 0.1	< 0.1
2	0.5	17.0	>99.9	< 0.1	< 0.1
3	1	9.2	>99.9	< 0.1	< 0.1

Reaction conditions: *p*-CNB 0.25-1 g, catalyst 50 mg, methanol 30 mL, H_2 pressure 3

MPa,	temperature	353	Κ,	reaction	time	1.5	h.
------	-------------	-----	----	----------	------	-----	----

Cl—	H_2 NO ₂ H_2 Cataly	→ Cl	NH2 +	NH ₂ +	NO ₂
Entry	<i>p</i> -CNB mass /g	Conversion - /%		Selectivity /%	
1	0.25	31.1	80.0	7.5	12.5
2	0.5	17.8	86.9	< 0.1	13.1
3	1	10.0	84.5	5.8	9.7

 Table S16. The kinetic studies on the effect of *p*-CNB concentration over 5%Co/NPC

800.

MPa,	temperature	353	Κ.	reaction	time	3	h
1,11 00,	temperatare	565	· · · ,	100001011	viiii e	5	110

Cl-		$H_2 \rightarrow H_2$	Cl-NH2	2+	NO ₂
_		Conversion.		Selectivity /%	
Entry	P _{H2} /MPa	/%			
1	0.5	4.2	>99.9	< 0.1	< 0.1
2	1.5	11.4	>99.9	< 0.1	< 0.1
3	3	34.0	>99.9	< 0.1	< 0.1

Table S17. The kinetic studies on the effect of H_2 pressure over 5%Co/NSPC-800.

Reaction conditions: *p*-CNB 0.5 g, catalyst 50 mg, methanol 30 mL, H_2 pressure 0.5-3

MPa,	temperature	353	К,	reaction	time	3	h.
------	-------------	-----	----	----------	------	---	----

Cl—		^{+H} 2 Catalyst Cl	▶ NH ₂ +	NH ₂ +	NO2
			S	Selectivity /%	
Entry	P _{H2} /MPa	Conversion /%			
1	0.5	2.8	>99.9	< 0.1	< 0.1
2	1.5	11.2	92.7	< 0.1	7.3
3	3	17.8	86.9	< 0.1	13.1

Table S18. The kinetic studies on the effect of H_2 pressure over 5%Co/NPC-800.

Reaction conditions: *p*-CNB 0.5 g, catalyst 50 mg, methanol 30 mL, H_2 pressure 0.5-3

MPa,	temperature	353	Κ,	reaction	time	3	h.
------	-------------	-----	----	----------	------	---	----

	$^{+\text{H}_2/\text{D}_2}$ Cl	NH2 +	$NH_2 + NO_2$
Entres	Desetion times	Conv	ersion
Entry	Reaction time	H ₂ atmosphere	D ₂ atmosphere
1	0	0	0
2	1.5	0.055	0.012
3	3	0.117	0.025

Table S19. The H_2 - D_2 exchange kinetics experiment result over 5%Co/NPC-800.

Reaction conditions: p-CNB 0.5 g, catalyst 50 mg, methanol 30 mL, pressure 1.5 MPa,

temperature	353	Κ,	reaction	time	0-3	h.
-						

Cl-		$NO_2 \xrightarrow{+H_2} Catalyst C$	NH ₂	+	NO ₂
		Conversion -		Selectivity /%	
Entry	Temp. /K	/%			
1	333	14.2	>99.9	< 0.1	< 0.1
2	353	34.0	>99.9	< 0.1	< 0.1
3 ^a	373	25.0	>99.9	< 0.1	< 0.1

Table S20. The effect of reaction temperature on the catalytic performance over5%Co/NSPC-800.

Reaction conditions: *p*-CNB 0.5 g, catalyst 50 mg, methanol 30 mL, H_2 pressure 3 MPa, temperature 333-373 K, reaction time 3 h.

a	reaction	time	1.5	h.

Table S21. The effect of reaction temperature on the catalytic performance over5%Co/NPC-800.

Cl—		+H ₂ Catalyst Cl	NH ₂ +	NH ₂ +	NO2
			1	Selectivity /%	
Entry	Temp. /K	Conversion /%			
1	333	7.5	88.1	< 0.1	11.9
2	353	17.8	86.9	< 0.1	13.1
3	373	49.7	48.7	51.3	< 0.1

temperature	333-373	Κ,	reaction	time	3	h.
1)				

Catalyst	P _{H2} /MPa	T /K	$E_a / \mathrm{KJ} \cdot \mathrm{mol}^{-1}$	Ref.
Co-NSPC-800	3	333-373	50	[7]
Co SAs/NHPCN	2	363-383	49	[14]
Co ₁ /NC	3	363-403	51	[15]
Co ₁ /NPC	3	363-403	22	[15]
Co/NMC-800	1	343-383	28	[16]
2Co-1Zn@NC-800	1	323-353	63	[17]
5%Co/NPC-800	3	333-373	48	This work
5%Co/NSPC-800	3	333-373	33	This work

Table S22. The activation energy values of reported effective transition metal catalysts.

Table S23. The hydrogenation of *p*-CNB over 5%Co/NSPC-800 under different

reaction	conditions.

$Cl \longrightarrow NO_2 \xrightarrow{+H_2} Cl \longrightarrow NH_2 + NH_2 + NO_2$						
		Selectivity /%				
Entry	Conversion /%		NH ₂			
1	33.8	>99.9	< 0.1	< 0.1		
2ª	20.8	90.6	< 0.1	9.4		
3 ^b	19.7	90.5	< 0.1	9.5		
4°	15.2	84.4	< 0.1	15.6		
5 ^d	15.0	81.7	< 0.1	18.3		
6 ^e	12.4	51.1	28.7	20.2		

Reaction conditions: halogenated nitrobenzene 3.2 mmol, catalyst 50 mg, methanol 30

mL, H₂ pressure 3 MPa, temperature 353 K, reaction time 3 h.

^a 0.03 mmol KSCN as catalyst inhibitor with SCN⁻ to cobalt molar ratio of 1.

^b 0.25 mmol KSCN as catalyst inhibitor with SCN⁻ to cobalt molar ratio of 8.5.

^c 0.03 mmol EDTA as catalyst inhibitor with EDTA to cobalt molar ratio of 1.

^d 0.25 mmol EDTA as catalyst inhibitor with EDTA to cobalt molar ratio of 8.5.

^e The catalyst was treated with 35% hydrochloric acid for 12 h.

Entry			Selectivity /%	
	Reactant	Conversion /%	NH ₂	
1		40.2	>99.9	
2	NH-OH	0	0	
3		22.0	>99.9	

 Table S24. The experimental results of hydrogenation of various intermediates.

Reaction conditions: reactant 3.2 mmol, 5%Co/NSPC-800 50 mg, methanol 30 mL	, H ₂
---	------------------

pressure	3	MPa,	temperature	353	Κ,	reaction	time	3	h.
----------	---	------	-------------	-----	----	----------	------	---	----

Reference

- [1] R. Gao, H. Guo, B. Wang, P. Qiu, M. Sun, L. Chen, Co based N, S co-doped carbon hybrids for catalytic hydrogenation: Role of cobalt salt and doped S, *Appl. Catal.*, *A*, 2019, **579**, 99-105.
- [2] Y. Sheng, B. Wu, J. Ren, X. Wang, X. Zou, X. Lu, Efficient and recyclable bimetallic Co-Cu catalysts for selective hydrogenation of halogenated nitroarenes, *J. Alloys Compd.*, 2022, 897, 163143.
- [3] X. Sun, A.I. Olivos-Suarez, D. Osadchii, M.J.V. Romero, F. Kapteijn, J. Gascon, Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes, *J. Catal.*, 2018, 357, 20-28.
- [4] Y. Cao, K. Liu, C. Wu, H. Zhang, Q. Zhang, In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mild conditions, *Appl. Catal.*, *A*, 2020, **592**, 117434.
- [5] W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes, *Chem. Sci.*, 2016, 7, 5758-5764.
- [6] M. Li, S. Chen, Q. Jiang, Q. Chen, X. Wang, Y. Yan, J. Liu, C. Lv, W. Ding, X. Guo, Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes, *ACS Catal.*, 2021, **11**, 3026-3039.

- [7] X. Wang, Y. Li, Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived co-based catalysts, J. Mol. Catal. A: Chem., 2016, 420, 56-65.
- [8] J. Xu, J.-q. Bai, W. Si, Y. Zhang, J. Tan, M. Cai, Q. Cheng, S. Sun, N, S-Co-doping Significantly Improves the Co-N_x Content of the Co-NSPC Catalyst and Enhances the Catalytic Performance for Selective Hydrogenation of Halogenated Nitrobenzenes, *Ind. Eng. Chem. Res.*, 2023, **62**, 3862-3872.
- [9] F. Zhang, C. Zhao, S. Chen, H. Li, H. Yang, X.-M. Zhang, In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics, *J. Catal.*, 2017, 348, 212-222.
- [10] D. Zhou, L. Zhang, X. Liu, H. Qi, Q. Liu, J. Yang, Y. Su, J. Ma, J. Yin, A. Wang, Tuning the coordination environment of single-atom catalyst MNC towards selective hydrogenation of functionalized nitroarenes, *Nano Res.*, 2022, **15**, 519-527.
- [11] P. Zhou, L. Jiang, F. Wang, K. Deng, K. Lv, Z. Zhang, High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives, *Sci. Adv.*, 2017, 3, e1601945.
- [12] L. Zhang, N. Shang, S. Gao, J. Wang, T. Meng, C. Du, T. Shen, J. Huang, Q. Wu,
 H. Wang, Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics, *ACS Catal.*, 2020, 10, 8672-8682.

- [13] J. He, N. Li, Z.G. Li, M. Zhong, Z.X. Fu, M. Liu, J.C. Yin, Z. Shen, W. Li, J. Zhang, Strategic Defect Engineering of Metal-Organic Frameworks for Optimizing the Fabrication of Single-Atom Catalysts, *Adv. Funct. Mater.*, 2021, 31, 2103597.
- [14] H. Wang, Y. Wang, Y. Li, X. Lan, B. Ali, T. Wang, Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent, ACS Appl. Mater. Interfaces., 2020, 12, 34021-34031.
- [15] Q. Cai, Q. Xu, Y. Zhang, Y. Fu, D.-L. Chen, J. Zhang, W. Zhu, F. Zhang, Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogenincorporated hollow porous carbon. J. Phys. Chem. C., 2021, 125, 5088-5098.
- [16] H. Jin, P. Li, P. Cui, J. Shi, W. Zhou, X. Yu, W. Song, C. Cao, Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co₁-N₃P₁ sites, *Nat. Commu.*, 2022, **13**, 723.
- [17] F. Zhang, C. Ma, Y. Zhang, H. Li, D. Fu, X. Du, X.-M. Zhang, N-doped mesoporous carbon embedded Co nanoparticles for highly efficient and stable H₂ generation from hydrolysis of ammonia borane, *J. Power Sources.*, 2018, **399**, 89-97.

[18] W. Xiong, S. Zhou, L. Wang, Y. Liu, F. Hao, P. Liu, H. Luo, ZIF-Derived Co-Based Catalysts for Efficient Hydrogenation of Aromatic Compounds: the Study of the Co-N_x Active Sites, *Ind. Eng. Chem. Res.*, 2020, **59**, 22473-22484.