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Experimental Section

Otherwise noted all chemicals were purchased from Sigma-Aldrich and used as received.
[RuClz(p-cymene)]. complex was purchased from Strem and used as received. 1S,2S)-
1,2bis(4hydroxyphenyl)ethylenediamine was purchased from Sigma-Aldrich.
Dimethylformamide was dried over molecular sieves 4A overnight and drying agent was
removed through decantation, followed by vacuum distillation. THF was pre-dried over CaH»
and distilled over Na-wire/benzophenone under a nitrogen atmosphere. N. physical adsorption
tests were performed on a Quantachrome Corporation, Autosorb-6 adsorption analyzer
(samples were degassed at 160 °C for 8 h before the measurements). The BET surface areas
were evaluated from data in the relative pressure range from 0.05 to 0.25. The total pore
volume was estimated from the amount adsorbed at the highest P/P, (above 0.99). The surface
chemistry of the functionalized particles was analyzed with X-ray photoelectron spectroscopy
(XPS) (K-Alpha XPS, ThermoFisher Scientific, U.S.A) in order to characterize the content.
Environmental Scanning Electron Microscope (SEM) images were recorded using FEI Quanta
200 FEG ESEM device. Gas chromatography-mass spectrometry (GC-MS) analyses were
performed with a Shimadzu GC-MS 2010Plus using a Restek Rxi-5Sil column (30 m x 0.25
mm x 0.25 ym) and a temperature range of 50-320 °C with a constant helium flow rate of 1
mL/min. Enantioselectivity of chiral alcohols was determined by GC-MS analysis using
TrajanTM SGE-Cydex-B column ( 25m x 0.22 mm x 0.25 ym) with a constant helium flow rate
of 1 ml/min. Dynamic light scattering (DLS) analysis was carried out using a Malvern Seta-
Sizer Nano-ZS90 with a fixed scattering angle 90°. High contrast transmission electron
microscopy (TEM) images were recorded at METU Central Lab (Ankara) with FEI Tecnai G2
Spirit Bio(TWIN) 600 TEM at 120 kV using carbon filmed coated copper grids via dropping 1
ML of samples into the grids from EtOH diluted samples.

Synthesis of M1

O O
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Scheme S1. Synthesis of hydrophilic monomer (M2)



Polyetilenglikol monomethyl ether (PEG2000, 22.0 g, 11.0 mmol) was taken to a 100 mL glass
balloon and dry dichloromethane (50 mL) and molecular sieve 4A was added to the reactor
and stirred overnight to dry the PEG. Molecular sieves were separated from the reaction
mixture through filtration and the organic solution was taken to a glass balloon.
Bicyclo[2.2.1]hept-5-ene-2-carbonyl chloride ( 1.0 g, 6.39 mmol) and triethylamine (0.71g, 7.0
mmol) were added to the reactor and the reaction mixture was stirred for 24 h at room
temperature under nitrogen atmosphere. After 24 h, the polymer was precipitated in cold
diethyl ether and stored at -24 °C overnight. The precipitated white solid was separated from
the mixture through filtration. The compound was characterized by means of SEC, MALDI-
ToF-MS, *H and *C NMR spectroscopy.

Synthesis of M2

O
toluene /
O/ 110 0C N
Dean-Stark apparatus
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Scheme S2. Synthesis of hydrophobic monomer (M2)

5-norbornene-2,3-dicarboxylic anhydride (10 g, 61.0 mmol) and dry toluene ( 20 mL) was taken
to a glass flask equipped with a Stark apparatus. Aniline (6.8 g, 73.0 mmol) was added to the
reaction vessel and the reaction mixture was heated to 110 °C in a pre-heated oil bath. After
48 h, the reaction mixture was cooled to room temperature and the monomer was precipitated
in cold diethyl ether. The white solid was separated through vacuum filtration and dried under
vacuum at 40 °C, overnight. The monomer (exo&endo mixture) was characterized by means
of IH and *C NMR and GC-MS analysis.



Synthesis of L1
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Scheme S3. Synthesis of L1

A 100 mL two-necked glass flask (100 mL) was charged with (1S, 2S)-1,2-bis(4-
hydroxyphenyl)ethylenediamine (1.0 g, 4.1 mmol) and S-Boc-2-mercapto-4,6-
dimethylpyrimidine (3.97 g, 16.5 mmol) in 10 mL of dry DMF. The reaction mixture was stirred
at room temperature for 24 h under a nitrogen atmosphere. The solvent was evaporated under
a vacuum resulting in a dark yellow solid. The flask was charged with dichloromethane ( 20
mL) to dissolve the unreacted starting materials and side products. The resulting suspension
was filtrated and the remaining solid was washed with hexane (10 mL x2) and dried under high
vacuum, resulting in a light yellow/off-white solid (yield %: 60 %). ESI-MS: 443.2188; 443.2201

IH NMR (400 MHz, DMSO) & 9.54 (s, 2H), 7.04 (d, J = 21.1 Hz, 2H), 6.64 (d, J = 45.7 Hz, 2H),
5.38 (s, 2H), 1.29 (s, 18H). *C NMR (100 MHz, DMSO) & 155.99, 154.06, 129.24, 127.76,
119.04, 114.44, 77.79, 28.60

Synthesis of L2
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Scheme S4. Synthesis of L2

L1 (0.30 g, 0.7 mmol) was dissolved in 5 mL of dry DMF at room temperature in a 50 mL glass
flask. K.CO3 ( 0.6 g, 4.34 mmol) was added to the reaction flask in small portions over a period

of one hour. p-vinylbenzyl chloride (0.45 g, 2.95 mmol) was added to the reaction flask and



stirred at room temperature for 24 h. The reaction mixture was filtrated over a small pad of
silica gel and solvent and excess p-vinylbenzyl chloride was removed by a rotary evaporator
under vacuum. The resulting yellow solid was washed with diethtyl ether (10 mL x 2) and dried
under a high vacuum. ( Yield %: 46 %).

IH NMR (400 MHz, CDCls) & 7.46 — 7.05 (m, 12H), 6.91-6.79 (m, 6H), 5.83 (d, J = 17.8 Hz,
4H), 5.68 (d, J=2.4 Hz, 2H), 5.29 (d, J = 11.3 Hz, 2H), 4.96 (s, 4H), 1.29 (s, 18H). 3C NMR
(100 MHz, CDCls) & 156.22, 136.60, 128.88, 128.27, 127.47, 126.62, 126.40, 120.49,
113.87, 111.79, 78.80, 69.64, 56.63, 46.14, 28.49

Synthesis of Amph

A Schlenk reactor was charged with M1 monomer ( 0.64 g, 0.15 mmol) in 10 mL of dry toluene.
Hoveyda-Grubbs 2" generation catalyst (HG2, 0.010 g, 0.015 mmol) was added to the reactor
and stirred at 80 °C under a nitrogen atmosphere. After 30 minutes, M1 monomer (0.36 g, 1.50
mmol) and L2 (0.02g, 0.03 mmol) as chain-transfer agent was added to the reactor and stirred
at 80 °C for 12 h. After 12h, the reaction mixture was cooloed down to room temperature and
poured into cold diethyl ether and the precipitated polymer was isolated by simple filtration.
The off-white polymer was redissolved in THF and precipitated in cold diethyl ether to remove
the unreacted monomers and residual catalysts. The amphiphilic polymer was characterized
by means of 'H NMR, SEC, DLS and high contrast TEM analysis.

Synthesis of Ru@Amph (Ru-L3)

Amphiphilic polymer (Amph was dissolved in dry THF (5 mL) at room temperature. Following
this protocol, agueous 4 M HCI ( 400 pL) was added to the solution to remove the protecting t-
Boc groups to obtain free amine groups on the polymer backbone. The reaction mixture was
washed with saturated NaHCO3 solution to remove the excess acid and then extracted with
deionized water. The organic phase was separated and the polymer was precipitated in cold
diethyl ether. The polymer was dried under a high vacuum overnight. The polymer (L3) was
taken to a Schlenk reactor and the polymer was dissolved in dry dichloromethane ( 10 mL).
After dissolution of L3, triethylamine (1.6 mol equivalent) and p-toluenesulfonyl chloride (1.2
mol equivalent relative to amine group) was added to the reactor and stirred at room
temperature for 4 h under a nitrogen atmosphere. Following this protocol, [RuClx(p-cymene)]-
was added to the reactor and stirred for 12 h at room temperature. After 12 h, the reaction

mixture was filtrated over a pad of silica gel and precipitated in cold diethyl ether.



0.20 g of Ru@amph (L3) was dispersed in 10 mL of pure water and diluted with 90 mL of
ethanol using mechanical stirrer. 0.10 g Synperonic®F108 and 0.10 g centrimonium bromide
(CTAB) were added to the reaction mixture and stirred for one hour to ensure the complete
dissolution of the added surfactants. After one hour, concentrated ammonia ( 1 mL) was added
to the reaction mixture and stirred for five minutes. Tetraethylorthosilicate (TEOS) (1.50 g) was
added dropwise to the solution under mechanical stirring at 280 rpm. Following the addition of
TEQS, the reaction mixture was stirred for 24 h at room temperature. Silica coated particles
were isolated by centrifugation of the reaction mixture at 6000 rpm. The isolated silica particles
were washed with ethanol (10 mL x 2) and dried under a high vacuum overnight.

Immobilization of Au on SiO2@Ru-amph (Au@SiO2@Ru-amph)

SiO;@Ru@amph (0.50 g) was taken to a Schlenk reactor and dispersed in 10 mL of
dichloromethane. IPrAuCl (0.025 g) in dichloromethane (1 mL) was added to the reaction
medium and stirred magnetically at 800 rpm. After 24 h, dichloromethane was removed under
a high vacuum. The resulting solid was washed with ethanol ( 2 mL x 2). 90 % wt. of added
gold complex was immobilized on the support material. The Au content was found to be 0.077
mmol Au/g as confirmed by ICP-MS.

Post-pore size reduction of Au@SiO2@Ru@L3 through silylation reactions

A 100 mL three necked Schlenk flask was charged with SiO.@Ru-Amph ( 1.0 g, 0.118 mmol
Ru/g) and dispersed in dry dichloromethane through ultrasound for five minutes. After that,
IPrAuCl (10 mg, 0.0161 mmol) were added to the reaction medium and stirred for 12 h at room
temperature under nitrogen atmosphere. To reduce the pore-size, dichlorodiphenylsilane
(SiClPhy, 20 pL, 0.096 mmol) and 2-methylpyridine (0.20 mmol, 20 pyL) was added to the
reaction media and stirred for 12 h at room temperature. Solvent was evaporated under high
vacuum. The resulting orange/yellow solid was washed with dichloromethane ( 2 mL x 2) and

dried under vacuum at 30 °C.



Alkyne Hydration Reactions in the presence of Au@SiO@Amph or en-
Au@SiO2@Ru-Amph catalysts

A Schlenk reactor was charged with Au@SiO,@L3 or en-Au@SiO,@L3 (encapsulated) ( 100
mg, 0.077 mmol Au/g or 100 mg, 0.012 mmol Au/g) and dispersed within MeOH/H>O ( 1 mL/
1 mL) using sonication. Phenylacetylene ( 0.77 mmol, 85 uL or 0.12 mmol, 13 uL) were added
to the reactor and silver (I) salts ( 1 mol % equivalent, AQOTf or AgSbFe) were added. When
the conversion of substrate has reached a plateau the reaction was cooled to room

temperature and the product was extracted with diethyl ether.

Asymmetric Transfer Hydrogenation Reactions in the presence of
Au@SiO2@Amph or Ru@Amph

A Schlenk reactor was charged with Ru@amph (0.016 mmol Ru/g) or en-Au@SiO.@Ru-amph
and dispersed in methanol/H>.O ( 1 mL/1 mL) mixture at room temperature under nitrogen
atmosphere. Acetophenone ( 1.6 mmol, 190 yL) and sodium formate (HCOONa, 3.2 mmol,
0.22 g) was added to the reaction media to initiate the reaction. The reaction was monitored
by taking aliquots ( 10 uL) from the reaction mixture and analysed by GC-MS. Once the
conversion of acetophenone has reached a plateau, the reaction mixture was cooled down to
room temperature and extracted with diethyl ether.

Sequential Alkyne Hydration/Asymmetric Transfer Hydrogenation Reactions in
the Presence of en-Au@SiO2@Ru-amph

A Schlenk reactor was charged with en-Au@SiO.@Ru-amph ( 100 mg, 0.0120 mmol Au/g,
0.118 mmol Ru/g) and dispersed in MeOH/H;O (2 mL). Phenylacetylene ( 1000 mol equivalent
to Au and 100 mol equivalent to ruthenium) was added to the reaction media and alkyne
hydration reaction was initiated by addition of AOTf ( 1 mol %, 0.0120 mmol, 3.0 mg) and the
reaction mixture was stirred at 80 °C under nitrogen atmosphere. Once all the phenylacetylene
was converted to the desired hydration product; acetophenone, sodium formate (2.4 mmol,
0.163 g) was added to the reaction media to initiate the asymmetric transfer hydrogenation
reactions. After the conversion of acetophenone has reached a plateau, the catalyst was
separated by centrifugation at 5000 rpm for 2 minutes and the solution phase was taken to a

separation funnel and extracted with diethyl ether.
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Figure S1. *H NMR spectrum of L1 (400 MHz, de-DMSO)
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Figure S2. 13C NMR spectrum of L1 (100 MHz, ds-DMSO)
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Figure S 16. High contrast TEM images of Amph
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Figure S 20. HR-TEM images of SiO.@Ru@Amph (Please note that relatively larger
particles are specifically chosen to obtain a more detailed EDX-line analysis)
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Figure S 24. TGA analysis of SiO.@Amph
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Figure S 26. XPS scan survey of SiO.@Amph
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Figure S 28. a) N(1s) and b) C(1s) XPS spectrum of SiO,@Amph
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Figure S 29. High resolution (HR) TEM images of SiO.@Amph

Figure S 30. HR-TEM images of SiO@Amph
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Figure S 31. N, adsorption/desorption isotherm of SiO,@Amph (Ruthenium free silica gel)
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Figure S 32. Pore size distribution of SiO.@Amph (Ruthenium free)
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Figure S 36. Comparison of AH reactions of phenylacetylene using encapsulated catalysts
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Figure S 38. *H NMR spectrum of 2a (400 MHz, CDCls)
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Figure S 40. *C NMR spectrum of 2a with expanded region (100 MHz, CDClz)
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Figure S 46. *C NMR spectrum of 2d (100 MHz, CDCls)
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Figure S 51. *H NMR spectrum of 2k (400 MHz, CDCls)
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Figure S 52. *C NMR spectrum of 2k (100 MHz, CDCls)
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Figure S 53. *H NMR spectrum of 3a (400 MHz, CDCls)
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Figure S 62. *C NMR spectrum of 1f (100 MHz, CDCls)
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Figure S 68. MS (EI) spectrum of 3f
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Figure S 70. Chiral GC chromatogram of 3b
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Figure S 72. Chiral GC chromatogram of 3d
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Figure S 74. Chiral GC chromatogram of 3f
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