Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Material

Mechanism of ammonium bisulfate deposition on V₁M₅/Ti catalysts

with synergistic effect of V and M (M=Ce, Co, Fe, Mn) in the

selective catalytic reduction of NO with NH₃ at low temperatures

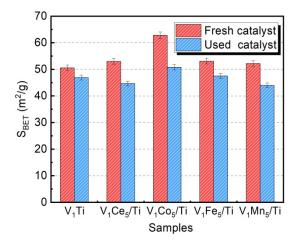
Zhicheng Xu^{1, 3}, Jin Xiong¹, Yuran Li^{1*}, Junxiang Guo¹, Bin Wang¹, Tingyu Zhu^{1, 2*}

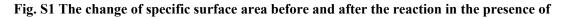
¹CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation

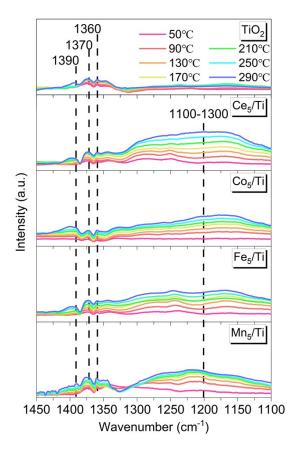
Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China

² Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment,

Chinese Academy of Sciences, Xiamen 361021, China


³ Environmental Protection Research Institute, Beijing Research Institute of Chemical Industry,


SINOPEC, Beijing 100013, China


*Corresponding author

E-mail: yrli@ipe.ac.cn (Yuran Li), tyzhu@ipe.ac.cn (Tingyu Zhu)

Results and discussion

SO₂ and H₂O on various catalysts

Fig. S2 In situ DRIFTS spectra of the carriers at various temperatures (Samples were treated at 1000 ppm SO₂ and 6% O₂)

In situ DRIFTS spectra have been collected for various supports, with results

shown in Fig. S2. The peak at 1390 cm⁻¹ is attributed to tridentate sulfate, the wide peaks at 1100 - 1300 cm⁻¹ are attributed to monodentate sulfate and bidentate sulfate [1, 2], the two peaks at 1370 cm⁻¹ and 1360 cm⁻¹ belong to the vibration of gaseous SO₂ [3, 4]. The tridentate sulfate peak occurs on TiO₂ above 290 °C, indicating that the TiO₂ carrier without active sites hardly oxidizes SO₂ to tridentate sulfate at low temperature. The intensity of tridentate sulfate peak is much lower on various carriers without V sites, and the monodentate sulfate and bidentate sulfate peaks occur on M₅/Ti carriers. It is indicated that the V sites as main active sites oxidize SO₂ to form tridentate sulfate and transitional metal sites as main active sites oxidize SO₂ to form monodentate sulfate and bidentate sulfate.

References

[1] C. Li, M. Shen, T. Yu, J. Wang, J. Wang, Y. Zhai, The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures, Phys. Chem. Chem. Phys., 19 (2017) 15194-15206. <u>http://doi.org/10.1039/c7cp02324c</u>.

[2] F. Gao, X. Tang, H. Yi, J. Li, S. Zhao, J. Wang, C. Chu, C. Li, Promotional mechanisms of activity and SO 2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH 3 at low temperature, Chem. Eng. J., 317 (2017) 20-31. <u>http://doi.org/10.1016/j.cej.2017.02.042</u>.

[3] K.-Q. Wang, X.-M. Gao, B. Lin, D.-X. Hua, Y. Yan, H.-Y. Zhao, W.-D. Xiao, An efficient calcium-based sorbent for flue gas dry-desulfurization: promotion roles of nitrogen oxide and oxygen, RSC Advances, 13 (2023) 1312-1319. <u>http://doi.org/10.1039/d2ra05769g</u>.

[4] Y. Lyu, J. Xu, Q. Cao, Z. Zhou, W. Hu, X. Liu, Highly efficient removal of toluene over Cu-V oxides modified γ -Al2O3 in the presence of SO2, J. Hazard. Mater., 436 (2022). http://doi.org/10.1016/j.jhazmat.2022.129041.