
A Appendix

A.1 Example

As an example, we will go through encoding and decoding the molecule celecoxib.

Figure 8: Celecoxib

We will define our group set as consisting of 4 main groups: trifluoromethane, toluene, benzene, and
sulfonamide.

Figure 9: Group set used in this example.

We will now extract occurrences of the groups in the molecule. Since priorities were not specified,
we match groups by size in descending order.

We will now traverse the graph. The following diagrams demonstrate this process.

15

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2023



We then start traversing at an arbitrary atom, in this case the methyl carbon of the toluene.

We find that this atom belongs to a group, and so place the appropriate group token. We arbitrarily
select 0 to be the starting attachment point, since there is no previous connection into this group.

We then place an index token of [+2] to go from the 0th attachment point to the 2nd attachment
point. For readability, index tokens are shown as numbers, but in the actual encoder output a token
with the appropriate overload value would be used (e.g. in this case [Ring2] is overloaded to [+2]).

16



We again find that our current atom is in a group. This time, we place the group token with the
starting attachment point at the 2nd attachment index, since that is where the last bond entered from.

We then use the [pop] token to exit the current group. In this case, we go from the trifluoromethane
group back to the pyrazole group.

17



The next few steps build out the carbon chain of the benzene using atomic tokens, including placing a
branch and a ring bond.

18



19



After the benzene is completed, the molecule is finished by placing a sulfonamide group.

20



The decoding process for this Group SELFIES string will read in token-by-token, building the
molecular graph in the same order as shown in this encoding example.

A.2 Complexity and compression

To take into account the alphabet size of SMILES, SELFIES, and Group SELFIES, we compress
each representation using zlib to estimate the complexity of each representation. We first do index
encoding to convert each string into a list of ints by replacing each unique token with a unique int.
We then compress this representation using zlib.

Representation # unique tokens strings +index encoding +index encoding
+zlib compression

SMILES 34 11.80 MB 23.11 MB 3.70 MB
SELFIES 107 46.44 MB 19.68 MB 3.97 MB

Group SELFIES 247 42.05 MB 15.90 MB 3.61 MB

Table 3: Filesize of ZINC-250k when represented in SMILES, SELFIES, and Group SELFIES. When
using strings, SMILES takes up the least space. When using index encoding and then compressing
using zlib, Group SELFIES takes up the least space.

A.3 NFA experiments

Figure 10: Generated Group SELFIES and regular SELFIES binned by SAScore and number of
aromatic atoms. Molecules were generated from the NFA dataset.

We repeat Experiment 4.2 but for a dataset of nonfullerene acceptors (NFA) [50]. This dataset
contains many conjugated aromatic systems. In this case, we histogram by SAScore and the number
of aromatic atoms, as shown in Figure 10. Generated SELFIES are rarely able to preserve the aromatic
systems found in NFA, but generated Group SELFIES preserve much more of the aromatic systems,
and can produce molecules with lower and higher SAScore. When binning by number of aromatic
atoms, molecules with 0 aromatic atoms are omitted for clarity. About 49% / 98% of molecules
generated via Group SELFIES / SELFIES have 0 aromatic atoms. Group SELFIES uses a group set

21



containing 74 groups obtained via naïve fragmentation. N = 51281 molecules are generated via
Group SELFIES / SELFIES, equal to the size of the NFA dataset.

A.4 Substring SELFIES

Substring SELFIES is generated by taking a Group SELFIES string and replacing every group token
with a SELFIES substring corresponding to it. We compare Substring SELFIES and Group SELFIES
in the context of Experiment 4.2 in Figure 11 and find that generated Substring SELFIES are on par
with generated Group SELFIES.

Figure 11: Generated Group SELFIES and Substring SELFIES binned by SAScore and QED.
Molecules were generated from ZINC-250k.

A.5 No-Group SELFIES

No-Group SELFIES is generated by using the Group SELFIES encoder with an empty group set.
We compare regular SELFIES to No-Group SELFIES to determine the effect of small changes in
the base encoding process, such as branch tokens. In SELFIES, all [BranchX] expect a number
token after to determine the length of the branch, whereas in Group SELFIES, all [Branch] tokens
do not need a number token, instead using a [pop] token to exit branches. In Figure 12, generated
No-Group SELFIES are on par with or worse than generated SELFIES, indicating that the modified
encoding process does not contribute much to the overall performance of Group SELFIES.

Figure 12: Generated regular SELFIES and No-Group SELFIES binned by SAScore and QED.
Molecules were generated from ZINC-250k.

A.6 Distribution learning on other metrics

Distribution plots of molecular weight, QED, SAScore, and logP are shown to compare the distribu-
tions learned by the SELFIES and Group SELFIES VAE.

22



Figure 13: Distributions of molecular weight, QED, SAScore, and logP. Bracketed values in the
legend represent the Wasserstein distance to the original MOSES distribution.

A.7 Timing

Representation Encode Decode

SELFIES 0.199 ms 0.133 ms
Group SELFIES 12.860 ms 2.494 ms

Table 4: Running time of encoder/decoder for SELFIES and Group SELFIES. The SELFIES encoder
is 65x faster than the Group SELFIES encoder, and the SELFIES decoder is 19x faster than the Group
SELFIES decoder. Timing is averaged per molecule over the ZINC-250k dataset, using the same
group set of 53 groups as the length histogram experiments. Computations were done on a 2021
Apple MacBook Pro with a M1 Pro chip and 32 GB RAM.

23


	Appendix
	Example
	Complexity and compression
	NFA experiments
	Substring SELFIES
	No-Group SELFIES
	Distribution learning on other metrics
	Timing


