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S1. Kinetic parameter derivation 

 

Figure S1. Example of how kinetic parameters are estimated from the rate constant estimates at different temperatures with 
an Arrhenius plot. Arrhenius pre-factors can be estimated from the intercept of the linear fit, and activation energies can be 
estimated from the slope 

𝑘𝑘𝑥𝑥 = 𝐴𝐴𝑥𝑥 ∗ 𝑒𝑒
−𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎,𝑥𝑥
𝑅𝑅∗𝑇𝑇          Eq.S0 

If reactions are done at different temperatures the algorithm can be used to guess activation energies 
and pre-constants. Equation S0 shows that when we have a rate it is separable into constants, a pre 
factor A, and an activation energy Eact. The fact that 2 unknown constants govern the final rate 
constant that is expressed, means that at least 2 temperature measurements are needed to separate 
them. Since estimating these kinetic parameters is much harder than directly guessing the rate 
constants, first guesses for the activation energies and pre-constants are made based on algorithm 
guesses of the rate constants for all temperature points. Guesses are made by linearly fitting the 
natural logarithm of a rate constant against the reciprocal of the temperatures they are measured at 
as shown in Figure S1.  

  



S2. Versatility 

One of the big strengths of the algorithm is the versatility of the kinds of data and systems that can be 
put in. The following section is an exhibit of some different types of chemical datasets that can be fit 
to show the versatility of the method. Besides varying the models, dimensions of the dataset, data 
resolution, and noise parameters can be varied as well.  

S2.1. Simple system 
First is the simplest chemical system, a single 1 to 1 reaction.    

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎          Eq.S1 

𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎           Eq.S2 

Figure S2 shows a dataset comprised of 12 runs at temperatures of 330,360 and 390 K, and with 
starting concentrations of 0.5,1,3, and 5. The noise was 10% proportional noise and 0.05 structural 
noise, and a resolution of 20. Though there is a lot of noise the final SMAPE is 0.0689. The accuracy is 
due to the dataset size, and the small error is due to the fact that the noise always results in the best 
fit being a small amount off.  

 

Figure S2. Results for fitting a dataset made with a simple differential system  



S2.2. Simple catalytic system 
The simplest catalytic process can be described as simple A→B reaction running in presence of catalyst 
that can deactivate. 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎 ∗  𝐶𝐶𝑐𝑐𝑎𝑎𝑑𝑑           Eq.S3 

𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎 ∗ 𝐶𝐶𝑐𝑐𝑎𝑎𝑑𝑑           Eq.S4 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑘𝑘2 ∗ 𝐶𝐶𝑐𝑐𝑎𝑎𝑑𝑑           Eq.S5 

Only the substrate and product concentrations were made available to the algorithm. For Figure S3 
the dataset included 4 runs at 300, and 400 K, and with (substrate, catalyst) initial concentrations of 
(1,1) and (2,2) respectively. The datasets were modelled with the noise level of 2.5% and 0.01 for 
proportional and structural noise respectively and with the time resolution of 50 a.u. The final SMAPE 
is 0.156, showing that decent accuracy can be gained even for small datasets if they are simple and the 
noise levels are low.  

 

Figure S3. Results for fitting a dataset made with a simple catalytic differential system.  

  



S2.3. Hydrogen diffusion limited system 
Another example exhibits how effects related to diffusion or limits can also be included into 
calculations. Here hydrogen is a reactant that can limit the reaction rate. 

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝑘𝑘1  ∗  (𝐶𝐶𝑑𝑑2,𝑚𝑚𝑎𝑎𝑥𝑥 −  𝐶𝐶𝑑𝑑2)         Eq.S6 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑘𝑘2 ∗  𝐶𝐶𝑎𝑎 ∗  𝐶𝐶𝑑𝑑2          Eq.S7 

𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑘𝑘2 ∗  𝐶𝐶𝑑𝑑 ∗ 𝐶𝐶𝑑𝑑2          Eq.S8 

Figure S4 shows a dataset comprised of 16 runs at temperatures of 320, 330, 340 and 350 K, and with 
starting concentrations of 0.5, 1, 2, and 4, the noise was 1% proportional noise and 0.005 structural 
noise, with a resolution of 15 points that are denser towards the beginning. The final SMAPE is 0.0612, 
which proves that including transport phenomena can be done while preserving accurate 
measurement.  

 

Figure S4. Results for fitting a dataset made with a set of differentials mimicking reactions with limiting transport phenomena.  

  



S2.4. Competing reactions case 
Another common mechanism involves competing reactions. A system of 4 competing reactions was 
made to show that the constants of such systems are easily retrievable. 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎 − 𝑘𝑘2 ∗  𝐶𝐶𝑎𝑎 − 𝑘𝑘3 ∗  𝐶𝐶𝑎𝑎 − 𝑘𝑘4 ∗  𝐶𝐶𝑎𝑎      Eq.S9 

𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎           Eq.S10 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑘𝑘2 ∗  𝐶𝐶𝑎𝑎           Eq.S11 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘3 ∗  𝐶𝐶𝑎𝑎           Eq.S12 

𝑑𝑑𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝑘𝑘4 ∗  𝐶𝐶𝑎𝑎           Eq.S13 

Figure S5 shows a dataset comprised of 6 runs at temperatures of 400, 500 and 600 K, and with starting 
concentrations of 0.1 and 0.4, the noise was 10% proportional noise and 0.005 structural noise, with a 
resolution of 50 points The final SMAPE is 0.106. even though some graphs would be unintelligible to 
the naked eye, the fits show very clearly how the reactions relate to each other.  

 

Figure S5. Results for fitting a dataset made with a set of differentials of many competing reactions.  



Consecutive reactions 

Consecutive reaction is another common example. This system has 4 consecutive reactions. 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎          Eq.S14 

𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑘𝑘1 ∗  𝐶𝐶𝑎𝑎 − 𝑘𝑘2 ∗  𝐶𝐶𝑏𝑏         Eq.S15 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑘𝑘2 ∗  𝐶𝐶𝑏𝑏 − 𝑘𝑘3 ∗  𝐶𝐶𝑐𝑐          Eq.S16 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘3 ∗  𝐶𝐶𝑐𝑐 − 𝑘𝑘4 ∗  𝐶𝐶𝑑𝑑          Eq.S17 

𝑑𝑑𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝑘𝑘1 ∗  𝐶𝐶𝑑𝑑 − 𝑘𝑘2 ∗  𝐶𝐶𝑒𝑒         Eq.S18 

Figure S6 shows a dataset comprised of 6 runs at temperatures of 250, 260, 270, 280, 290 and 300 K, 
and with starting concentrations of 0.5, the noise was 0% proportional noise and 0.05 structural noise, 
with a resolution of 40 points. The final SMAPE is 0.144. The datasets are even more hard to interpret 
than the competing reaction dataset, especially at lower temperature, yet the fits are good, and the 
constants are quite accurate.  

 

Figure S6. Results for fitting a dataset made with a set of differentials of many consecutive reactions.  

  



S2.5. Heterogeneous catalysis case 
The last dataset shows that the method can be further extended to other complex processes such as 
surface reactions in heterogeneous catalysis. This last example demonstrates how even near-perfect 
data can be insufficient to reliably estimate some of the complexities of reactions.  

Heterogeneous catalysis is vastly different in mechanics from homogenous catalysis. 
Heterogeneous processes involve, desorption, and often a presence of catalytic sites with different 
activities. The full model is illustrated in Eqs. S17-21. The model includes adsorption constants, 
degradation of the number of sites, and degradation of the ratio of certain sites.  

Figure S7 shows a dataset comprised of 12 runs at temperatures of 320, 345, and 370, with starting 
concentrations of (reactant 1, reactant,2) of (1,1.1), and (1,1.5), and 2 catalysts, one with 10000 
reactive sites and a corner site per edge site ratio of 0.1, and another with 5000 sites and a corner site 
per edge site ratio of 0.3, and noise was 1% proportional noise and 0 structural noise, with a resolution 
of 30 points.  

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑁𝑁𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠 ∗ �𝑘𝑘1 ∗ %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠 + 𝑘𝑘2 ∗ %𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠� ∗
𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏

(1+𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏)2
   Eq.S19 

𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑑𝑑

= −𝑁𝑁𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠 ∗ �𝑘𝑘1 ∗ %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠 + 𝑘𝑘2 ∗ %𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠� ∗
𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏

(1+𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏)2
   Eq.S20 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠 ∗ �𝑘𝑘1 ∗ %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠 + 𝑘𝑘2 ∗ %𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠� ∗
𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏

(1+𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏)2
    Eq.S21 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑒𝑒𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠 ∗ �𝑘𝑘1 ∗ %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠 + 𝑘𝑘2 ∗ %𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠� ∗
𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏

(1+𝑘𝑘𝑎𝑎∗𝑑𝑑𝑎𝑎+𝑘𝑘𝑏𝑏∗𝑑𝑑𝑏𝑏)2
*0.25  Eq.S22 

𝑑𝑑%𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑘𝑘3 ∗ %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑠𝑠        Eq.S23 

The model can still find good fits despite all the convolution. Yet the guessed constants led to a 
SMAPE of 0.512. This result shows that when metrics are a result of many effects at once, and the 
different metrics do not give a lot of different information, the estimation capacity is limited, and 
intricate tuning of initial conditions must likely be done to extract the maximum amount of 
information. Despite the high SMAPE, the errors are mostly attributable to the Arrhenius constants. 
All rate constants are still good approximations with an average SMAPE of 0.178, meaning that all 
orders of reaction are accurate and even close to the real values.  



 

Figure S7. Results for fitting a dataset made with a set of differentials mimicking heterogeneous catalytic reaction behaviour.  

  



S2.6. Incomplete datasets 
In Figure S8 it is shown that the algorithm can even fit data if it does not have data for all combinations 
of temperatures and initial conditions. This is the base system used in the research, so the SMAPE can 
be compared to the ones found in the research. Besides, noise and other parameters can also be varied 
in many ways, as long as it stems from one reaction system.  

 

Figure S8. Results for fitting a dataset of the base homogeneous catalytic system that does not have a run for all combinations 
of included temperatures and initial conditions.  

The retrieved SMAPE value for this run was 0.264, so the effect of removing random runs can be 
less severe than completely removing runs for one initial condition or temperature.  

  



S3. Reliability and performance 

 

Figure S9. Graphs to illustrate how a fit of the data used for ODE fitting looks. A) concentration profiles, B) rate profiles, C) 
algorithm guess residual. 

The data was first fit per temperature. An example of one result of this for the reaction profiles, rate 
profiles, and the estimation error of one of those fits is Figure S9, it is based on runs at 3 different initial 
conditions and 3 different temperatures. The residuals of the R2_scores for the per temperature fitting 
are 2.41e-10, 2.65e-9, and 2.775e-5 for each temperature. For the total fitting the residual is 5.5e-6. 
Python has another simultaneous fitting package called symfit. The performance is similar to the 
algorithm in the current research. The input menu of the current research is more geared towards 
chemistry, given that it has a more compact input structure and that it allows for smooth workflows 
from fitting data per temperature to getting the total fit across different temperatures. Given the low 
error it is valid to assume any errors are attributable to the error in the data, not the algorithm.  

Table S1. Kinetic parameter estimation time for different datasets.  

Dataset\Estimation time Per temperature fitting time Simultaneous fitting time 
Perfect data, 3 temperatures, 3 
initial concentrations 

147 seconds 2 

Noisy data, 3 temperatures, 3 
initial concentrations 

158 seconds 2 

Maximum used noise, 3 
temperatures, 3 initial 
concentrations 

65 seconds 3 

Perfect data, 5 temperatures, 5 
initial concentrations 

446 seconds 8 

 



For all data the algorithm estimation time is negligible compared to the amount of time it would take 
to run reactions that would generate such a dataset. Table S1 shows that estimation time for the per 
temperature fitting of the data in Figure S9 is about 2 and a half minutes, and the estimation time for 
the subsequent full simultaneous fitting is about 2 seconds. Noise does not significantly influence the 
algorithm estimation time. The amount of data does influence the estimation time. For a dataset of 5 
temperatures and 5 initial conditions the estimation times increase to about 7 and a half minutes, and 
8 second respectively. Other alterations that influence dataset size will also affect the estimation time, 
but given that the reaction estimated is very complex, and that the data evaluated is very rich It is 
unlikely that the estimation time will be too long to be integrated into kinetic chemical measurements. 

  



S4. SMAPE information 

Table S2. Reference for errors in guesses of parameters for certain SMAPE scores 

SMAPE Percent deviance 

0.05 -5%/+5% 
0.10 -10%/+11% 
0.20 -19%/+22% 
0.40 -33%/+50% 
1 -66%/+200% 
2 -inf%/inf% 
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