Electronic Supplementary Material (ESI) for Digital Discovery. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Improving Molecular Machine Learning Through Adaptive Subsampling with Active

Learning

Yujing Wen^a, Zhixiong Li^a, Yan Xiang^a, Daniel Reker^{*a}

^a Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705,

United States

AUTHOR INFORMATION

* Corresponding Author

E-mail address: daniel.reker@duke.edu

 Table S1. Percentage increase of different performance metrics when using active learning

 based subsampling relative to training models on the full dataset.

Dataset	Percentage increase in MCC	Percentage increase in F1	Percentage increase in ACC	Percentage increase in BAS
BBBP	4.25%	0.40%	0.90%	3.40%
BACE	5.07%	3.71%	1.29%	2.19%
Clintox	129%	139%	2.72%	3.01%
HIV	5.52%	6.01%	0.55%	0.93%

_	Imbalance (% positive data)			
Dataset	Full dataset	maxIter set $T_{n_{max}}$		
BBBP	77.92%	58.38%		
BACE	53.04%	51.57%		
ClinTox	7.03%	29.68%		
HIV	3.81%	21.22%		

 Table S2. Class balance in the active learning-based dataset compared to the original class

 imbalance.

	Number of unique	Total number of	
Dataset	in every of the 20 active	at least once during 20	training data
	learning runs	active learning runs	molecules
BBBP	70	700	1019
BACE	224	702	756
Clintox	14	342	739
HIV	647	6784	20563

 Table S3: Number of unique molecules selected by the 20 active learning runs.

Table S4: Performance of sampling methods on datasets without error introduction. Performance is shown as percentage of maximum performance achieved per dataset. The last column shows the median performance of a method across all datasets. The best performing method per column (i.e., per dataset or across all datasets as measured by median) is highlighted in bold.

	BBBP	BACE	Clintox	ЛIЧ	B. Cancer	Median
Full model	0.96	0.95	0.29	0.85	0.97	0.95
Aliknn	0.98	0.90	0.81	0.94	0.96	0.95
ClusterCentroids	0.78	0.98	0.35	-0.02	0.98	0.94
CondensedNearestNeighbour	0.58	0.71	0.89	0.98	0.93	0.78
EditedNearestNeighbours	0.97	0.78	0.72	0.96	0.96	0.89
InstanceHardnessThreshold	0.78	0.90	0.66	1.00	0.87	0.96
NearMiss	0.30	0.78	0.10	0.10	0.97	0.87
NeighbourhoodCleaningRule	0.99	0.88	0.72	0.96	0.96	0.30
OneSidedSelection	0.96	0.95	0.34	0.91	0.95	0.96
RandomUnderSampler	0.92	0.95	0.70	0.52	1.00	0.95
RepeatedEditedNearestNeighbours	0.96	0.78	0.74	0.94	0.92	0.92
RandomOverSampler	0.97	0.95	1.00	0.96	0.94	0.95
SMOTEN	0.93	0.97	0.30	0.74	0.95	0.95
Balanced	0.87	0.89	0.61	0.61	0.92	0.96
Diverse	0.90	1.00	0.20	0.14	NA	0.87
Balanced-Diverse	0.82	0.93	0.45	0.44	NA	0.55
Diverse-Balanced	0.85	0.99	0.47	0.44	NA	0.64
Active Learning	1.00	1.00	0.67	0.90	0.98	0.98

Figure S1. Evaluation of active learning subsampling using other evaluation metrics: F1 score, accuracy, and balanced accuracy.

Figure S2. Improvements in performance for active learning-based subsampling when using scaffold-based train-test splits ("scaf") compared to random stratified splits ("RSS").