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1 Supplementary Note1: 

1.1 Encoder–decoder architecture 

As an instance of the encoder-decoder architecture, the overall architecture of the 

transformer is presented in Figure S1. The encoder maps an input sequence of symbol 

representations (𝑥1, … , 𝑥𝑛)  to a sequence of continuous representations  𝐳 =

(𝑧1, … , 𝑧𝑛). Given z, the decoder then generates an output sequence (𝑦1, … , 𝑦𝑚) of 

symbols, one element at a time. At each step, the model is auto-regressive, consuming 

the previously generated symbols as additional input when generating the next. In the 

encoder, the multi-head attention layers attend the input sequence and encode it into a 

hidden representation carrying the essential information, namely encoder state. The 

decoder consists of two types of multi-head attention layers: the first is masked and 
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attends only the preceding outputs of the decoder, while the second multi-head attention 

layer attends encoder states as well as the output of the first decoder attention layer. It 

basically combines the information of the source sequence with the target sequence that 

has been produced so far. The SMILES Transformer model in this work utilized three 

Transformer blocks for both encoder and decoder, that is to say, N is 3 in Figure S1. 

 

 

Figure S1. Architecture of the SMILES Transformer model used in this work. The left-half 

corresponds to the encoder while the right-half corresponds to the decoder. 

1.2 Multi-head Attention 

As the most important part of the Transformer architecture, the attention 

mechanism allows the model to focus on different tokens in the sequence at different 

stages of the network, enabling it to discover multiple relationships between groups of 

tokens. The attention function used here is called “Scaled-Dot Product Attention”1 and 

can be described as mapping a query and a set of key-value pairs to an output, where 

the query, keys, values, and output are all vectors. The output is computed as a weighted 
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sum of the values, where the weight assigned to each value is computed by a 

compatibility function of the query with the corresponding key. The input consists of 

queries and keys of dimension 𝑑𝑘, and values of dimension 𝑑𝑣. The dot products of the 

query with all keys are computed, and then divided by √𝑑𝑘. A softmax function is then 

applied to obtain the weights on the values. In practice, the attention function is 

computed on a set of queries simultaneously, packed together into a matrix Q. The keys 

and values are also packed together into matrices K and V. The matrix of outputs is: 

Attention (𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

The attention score as computed above determines the importance that should be given 

to different parts of an input sequence in the current context. In order to allow the model 

to jointly factor in information from different representation subspaces at different 

positions, multi-headed attention is used. Multiple attention scores are first calculated 

in parallel and then concatenated and projected using a linear transformation as: 

MultiHead (𝑄, 𝐾, 𝑉) = Concat (head1, … , headh)𝑊𝑂

where headi =  Attention (𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)

 

where the projections are parameter matrix  𝑊𝑖
𝑄 ∈ ℝ𝑑model ×𝑑𝑘 ,  𝑊𝑖

𝐾 ∈

ℝ𝑑model ×𝑑𝑘 ,  𝑊𝑖
𝑉 ∈ ℝ𝑑model ×𝑑𝑣 and 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑model. 

1.3 Positional encoding 

Unlike RNNs that recurrently process tokens of a sequence one by one, self-

attention ditches sequential operations in favor of parallel computation. To use the 

sequence order information, absolute or relative positional information is injected by 

adding positional encoding to the input representations. Positional encodings can be 

either learned or fixed. In the following, a fixed positional encoding based on sine and 

cosine functions is described. 



Suppose that the input representation X ∈ ℝ𝑛×𝑑  contains the d-dimensional 

embeddings for n tokens of a sequence. The positional encoding outputs X+P using a 

positional embedding matrix 𝑃 ∈ ℝ𝑛×𝑑 of the same shape, whose element on the 𝑖th 

row and the (2𝑗)th and the (2𝑗 + 1)th column is: 

𝑝𝑖,2𝑗 = sin (
𝑖

100002𝑗/𝑑
)

𝑝𝑖,2𝑗+1 = cos (
𝑖

100002𝑗/𝑑
)

 

In the positional embedding matrix P, rows correspond to positions within a sequence 

and columns represent different positional encoding dimensions. 

2 Supplementary Note2 

 

Figure S2. Performance of IL Transformer. (a) Learning curves for the validation and 

test sets, display the learning rate and the BLEU score with the training epochs. (b) Number 

of accurate canonical SMILES matches between the model-predicted and actual canonical 

SMILES for the test and validation sets. The IL Transformer displays remarkable 

performance, achieving stable validation and test BLEU scores of nearly 99.5 after the 

eighth epoch. Additionally, the model attains over 94% accurate canonicalized SMILES for 

both validation and test sets, including molecules with stereo- or cis/trans conformers, with 

translation accuracy higher than 84% and 90%, respectively. 

 

3 Supplementary Note3 

The characters as well as their indexes in the vocabulary are: [('<unk>', 0), ('<pad>', 
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1), ('<bos>', 2), ('<eos>', 3), ('c', 4), ('C', 5), ('(', 6), (')', 7), ('O', 8), ('1', 9), ('=', 10), ('N', 

11), ('[', 12), (']', 13), ('2', 14), ('-', 15), ('+', 16), ('n', 17), ('3', 18), ('H', 19), ('@', 20), ('F', 

21), ('S', 22), ('.', 23), ('l', 24), ('/', 25), ('4', 26), ('s', 27), ('B', 28), ('#', 29), ('r', 30), ('o', 

31), ('\', 32), ('P', 33), ('I', 34), ('5', 35), ('i', 36), ('a', 37), ('K', 38), ('e', 39), ('Z', 40), ('L', 

41), ('U', 42), ('Y', 43), ('6', 44), ('u', 45), ('R', 46), ('T', 47), ('M', 48), ('A', 49), ('g', 50), 

('t', 51), ('b', 52), ('W', 53), ('d', 54), ('f', 55), ('V', 56), ('h', 57), ('7', 58), ('G', 59), ('p', 

60), ('8', 61), ('m', 62), ('9', 63), ('E', 64), ('D', 65), ('%', 66), ('y', 67), ('0', 68), ('*', 69), 

('X', 70), ('k', 71)]. The meaning of each character in SMILES can be found in the 

original literature2. The symbol <bos> and <eos> are used for indicating the start and 

end of a SMILES string, respectively. The symbol <unk> is reserved for characters that 

do not exist in the dictionary. The symbol <pad> is used for padding SMILES strings 

of length less than 100 (the input size of our model) to 100. The non-canonical SMILES 

and canonical SMILES share the same vocabulary in this work. 

  



4 Supplementary Note4 

Table S1. 18 ILs meeting all the four constraints        

IL ID IL_SMILES CP MP TOX T298KP1bar_Xco2 T328KP1bar_Xco2 viscosity TD 

3219685 CCCNCC[N+](CC)(CC)CC.N#C[N-]C#N 539.04  296.92  3.48  0.07  0.02  76.85  212.54  

3252213 CCC[N+](CCN(CC)CC)(CC)CC.N#C[N-]C#N 630.81  292.92  3.41  0.04  0.00  94.40  263.32  

3257267 COCC[N+](CC)(CC)CC.N#C[N-]C#N 487.29  285.92  3.14  0.05  0.01  48.70  169.71  

3257270 COCC[N+](CC)(CC)CC.[O-]c1ccccc1 436.80  297.33  3.22  0.01  0.00  76.32  167.67  

3257293 CCC[N+](CCOC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 635.71  282.41  3.48  0.06  0.03  80.91  188.01  

3257305 CCC[N+](CCOC)(CC)CC.N#C[N-]C#N 541.49  262.31  3.11  0.05  0.00  59.35  185.38  

3257308 CCC[N+](CCOC)(CC)CC.[O-]c1ccccc1 495.02  284.66  3.26  0.01  0.00  72.26  174.41  

3257343 CCCC[N+](CCOC)(CC)CC.N#C[N-]C#N 577.75  262.85  3.21  0.04  0.00  74.32  183.15  

3257346 CCCC[N+](CCOC)(CC)CC.[O-]c1ccccc1 514.05  291.19  3.34  0.01  0.00  84.46  170.19  

3257521 CCOCC[N+](CCOCC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 681.91  284.12  3.42  0.07  0.03  83.68  165.99  

3257533 CCOCC[N+](CCOCC)(CC)CC.N#C[N-]C#N 623.95  294.67  3.40  0.04  0.00  74.57  171.23  

3258319 COCCOCC[N+](CCOCC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 716.25  296.40  3.49  0.05  0.02  81.42  157.30  

3258395 COCCOCCOCC[N+](CCOCC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 809.71  283.77  3.31  0.07  0.03  92.49  196.47  

3258433 CCOCC[N+](CC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 646.90  268.09  3.08  0.06  0.03  77.67  180.13  

3258445 CCOCC[N+](CC)(CC)CC.N#C[N-]C#N 521.51  284.80  3.40  0.04  0.00  52.46  201.99  

3258471 CCOCC[N+](CCC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 633.81  288.64  3.13  0.09  0.04  78.62  181.55  

3259535 CCCOCC[N+](CCOCCOCCOC)(CC)CC.FC(S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F)(F)F 803.36  275.87  3.21  0.11  0.05  86.40  191.64  

3415058 CNCC[N+](CCN(C)C)(CCC)CC.[n-]1ccnn1 567.15  291.36  3.18  0.01  0.00  88.32  204.68  
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