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1 Discrete Latent Representation as Fingerprints

There are several reported molecule fingerprint algorithms, such as extended-
connectivity fingerprint(ECFP4)[1], MinHashed fingerprint(MHFP6)[2] and
atom-pair fingerprint[3], which encode molecules into bitstrings as descriptors
for the target prediction. However, such mapping is not invertible, i.e., unable to
translate bitstrings back to corresponding molecules. Aiming at the problem, Le
et al.[4] proposed to convert the molecular fingerprint to a CDDD descriptor|5]
and then decipher it using the neural network. The results show that the average
reconstruction correctness is less than 70% evaluated by the Tanimoto similar-
ity on the three test datasets because of the serious information loss during
the encoding process. As a result, solving QUBO on the traditional molecule
fingerprints has the defect of undecodability to valid molecules.

In contrast, we show that our fragment-based latent discrete space is well-
organized. Two commonly-used drug molecules, Aspirin and Ibuprofen, are
embedded to bit vectors. Figure S1(a) visualizes the intermediate molecules
which are interpolated by equally flipping their different bits for 6 steps. The
Tanimoto similarity to the target molecule fingerprint continuously grows as
their generative fingerprints get closer. The smooth transition also implies
the well-organized latent binary space. Figure S1(b) indicates the neighboring
molecules around Aspirin. We first encode the Aspirin molecule to a bit vector,
and then randomly flip the certain increasing number of bits. As 1 bit changes,
the binary vector is still decoded to the Aspirin molecule. When 5 and 10 bits are
flipped, we observed the replacement of the fragment in Aspirin. The similarity
of generated molecules continuously decreases as divergence of bit vectors grows.
This illustrates that molecules are mapped to a compressed distribution and
those with similar fragments are in a neighbouring space.

2 Training Process

Six bJTVAE models with different latent dimensionalities, d = 50, 100, 200, 300, 450, 600,
were trained, while the latent dimensionality of JTVAE was fixed to 56 as in
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Figure S1: (a) Interpolation with equal flipped bits between two molecules in the

binary space; (b) Molecular similarity varies with increasing number of flipped
bits on the base molecule.
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Figure S2: Top molecules generated by bVAE-IM.
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Algorithm S1 bVAE-IM: Molecule generation pipeline.

Require: Define the desired number of molecule generations N

1:
2:

Input an oracle O for property computation

Input the unlabeled molecule dataset D, and the labeled molecule dataset
D; with corresponding property set Y

Let M = () be the set of generated molecules

Train a binary VAE model Mpyag consisting of an Encoder and a Decoder
using D,

5: Map D to a binary vector set X with Encoder(D;)
6: while |[M| < N do

Train a factorization machine Mgy using data pairs {zg, yi} for zp € X
and yp €Y

Convert Myy to a QUBO energy function Equpo

Solve the global state x; of Egupo by Ising machine

Decode x; to a molecule m; with Decoder(x;)

Compute corresponding property y; with O(m;)

Update labeled pairs {X,Y}: X « X U{z;}, Y < Y U{y;}

Add m; into M: M + MU {m;}

: end while
: return M

literature[6]. Each model is trained with a maximum epoch of 50 on a NVIDIA
Tesla V100 GPU. See Table S1 for the comparison results on training time of
bJTVAE and JTVAE. It is reasonable that the training time per epoch increases
as the dimensionality increment in bJTVAEs leads to more trainable parame-
ters. Even the 600-dimensional binary representation is still more efficient to be
learned than the continuous representation in terms of the average training time
for each epoch.

Table S1: Comparison of training time for JTVAE and bJTVAE with different
dimensional ity.

Model Runtime per epoch | GPU device
bJTVAE-50 0.92
bJTVAE-100 1.05
bJTVAE-200 1.08
bJTVAE-300 1.09 Tltjs\l/:]iflﬁ)o
bJTVAE-450 1.11
bJTVAE-600 1.30
JTVAE 1.30
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Figure S3: Property distributions of generated molecules by bVAE-IM using
different surrogate models including FM, Lasso, Ridge and PLS, in the three
benchmarking problems. As a reference, the property distribution in the initial
labeled data is shown as well.

3 Alternative surrogate models

bVAE-IM with different regression models are applied up to the point that 300
molecules are generated. Each run is repeated five times with different random
seeds. Amplify is employed as the QUBO sampler and the dimensionality of the
latent space is set to 300. The binary vectors are expanded to polynomial and
interaction features using the package, sklearn.preprocessing.PolynomialFeatures.
Then the weight of each feature is fitted by linear models. A QUBO model
can be built from the fitted weights. Figure S3 shows the integrated 5-run
results. All the surrogate models show certain ability in predicting extrapolated
values under our pipeline, while FM performs best among them by finding out
the highest-score candidate and highest mean values on property of generated
molecules in both tasks.

4 Results for Additional Properties

To prove that our method is extensively effective for diverse optimization objec-
tives, we conducted experiments on three other properties as suggested in the
GuacaMol benchmark|[7]: 1) molecular weight; 2) number of aromatic rings,3)
number of rotatable bonds, computed by RDKit[8]. Similarly, the training data
is intentionally limited to poor properties as well: molecule weight € [0, 350],
number of aromatic rings € [0,2], number of rotatable bonds € [0,5]. Each
property runs 5 times using different random seeds and 300 generations are
made for each run. See Figure S4 for the integrated optimized results. In all
tasks, the optimized molecules far exceed the range of training data, indicating
that our approach can be well extrapolated and generalized to diverse molecule
optimization problems.
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Figure S4: Comparisons of property distribution between the optimized molecule
set and the initial training set for properties: 1) molecular weight; 2) number of
aromatic rings; 3) number of rotatable bonds
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