
Formalizing Chemical Physics A PREPRINT

5 Supporting Information

5.1 Additional Background

Lean is an open source theorem prover developed by Microsoft Research and Carnegie Mellon University, based on
dependent type theory, with the goal to formalize theorems in an expressive way [13]. Lean supports user interaction
and constructs axiomatic proofs through user input, allowing it to bridge the gap between interactive and automated
theorem proving. Like Mizar [5] and Isabelle [6], Lean allows user to state definitions and theorems but also combines
more imperative tactic styles as in Coq [7], HOL-Light [8], Isabelle [9] and PVS [10] to construct proofs. The ability to
define mathematical objects, rather then just postulate them is where Lean gets its power [40]. It can be used to create
an interconnected system of mathematics where the relationship of objects from different fields can be easily shown
without loosing generality.

Figure S1: Overview of Lean Theorem Prover

As mentioned above, the power of Lean comes from the ability to define objects and prove properties about them. In
Lean, there are three ways to define new Types: type universes, Pi types, and inductive types. The first two are used to
construct the basis of dependent type theory, and are used for more theoretical, foundational stuff. Instead we will focus
on the use of inductive types. Standard inductive types, known as just inductive types, are built from a set of constructors
and well found recursion. Non-recursive inductive types that contain only one constructor are called structures.

Many mathematical objects in Lean can be constructed through inductive types, which is a type built from a set of
constructors and proper recursion [104]. The natural numbers are an inductive type, defined using Peano’s Encoding
[105]. This requires two constructors, a constant element, 0 : nat, and a function called the successor function, S. Then
one can be constructed as S(0), two can be constructed as S(S(0)), etc.

In Lean, the natural numbers are defined as:

inductive nat
| zero : nat
| succ (n : nat) : nat

Here, the type nat is defined through recursion by a constant element, zero, and a function. With this, the def command
is used to define properties about the class, like addition or multiplication. For instance, the addition of the natural
numbers is defined as:

protected def add : nat → nat → nat
| a zero := a
| a (succ b) := succ (add a b)

Addition is defined as a function that takes in two natural numbers and outputs a natural number. Since the natural
numbers are created from two constructors, there are two cases of addition that must be shown. The first is a general
natural number plus zero which yields the general natural number, and the next is a general natural number plus the
successor of a general natural number. The second case used recursion and calls add again until it reduces to zero.

The other way to define types is using structure which allows us to add constraints to a type variable. For instance, the
class has_add constrains a type to have a function called add which represents addition.

class has_add (↵ : Type u) :=
(add : ↵ → ↵ → ↵)

23

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2023



Formalizing Chemical Physics A PREPRINT

This can be used for more advanced ideas, like defining rings or abelian groups. We can use class to define areas of
science as new types with constraints to follow certain rules.

5.2 Additional Proofs

5.2.1 Langmuir Adsorption

The first Langmuir proof introduced earlier states every premise explicitly but however we can condense that by
rewriting hrad and hrd into hreaction to yield k_ad*P*S = k_d*A and we can then rewrite h✓ and hK in the goal
statement. While hrad, hrd, h✓, and hK have scientific significance, they do not have any mathematical significance. In
Lean it looks like:

theorem Langmuir_single_site2
(P k_ad k_d A S: R)
(hreaction : k_ad*P*S = k_d*A)
(hS : S 6= 0)
(hk_d : k_d 6= 0)
: A/(S+A) = k_ad/k_d*P/(1+k_ad/k_d*P) :=

However, while those four variables do not have any mathematical significance, and only serve to hinder our proofs,
they do have scientific significance, and we do not want to just omit them. Instead we can use the let command to
create an in-line, local definition. This allows us to have the applicability of the theorem, while still having scientifically
important variables. In Lean, this looks like :

theorem Langmuir_single_site
(P k_ad k_d A S : R)
(hreaction : let r_ad := k_ad*P*S, r_d := k_d*A in r_ad = r_d)
(hS : S 6= 0)
(hk_d : k_d 6= 0)
:
let ✓ := A/(S+A),

K := k_ad/k_d in
✓ = K*P/(1+K*P) :=

The first line after the theorem statement, gives the variables use in the proof. Notice that rad, rd, Keq, and ✓ are not
defined as variables. Instead, the let statement defines those four variables in their respective premise or goal. Then, in
the proof we can simplify the let statement to get local definitions of those variables, just like hrad, hrd, h✓, and hK.
While this version of proof follow the same proof logic minus the two initial rewrites from earlier version, however if
we stick with the first proof, we will find it very difficult to use compared to using this proof above, because of all those
hypothesises. Suppose we wanted to prove langmuir_single_site2 and we already have proven langmuir_single_site.
We would find it impossible to use langmuir_single_site because we are missing premises like hrad or hrd. Yet, we
could prove the other way, ie. use langmuir_single_site to prove langmuir_single_site2. Having all of those extra
premises that define the relation between variables only serves to hinder the applicability of our proofs.

5.2.2 BET Adsorption

We continue the derivation of Equation 27 from the paper that aims to redefine x as x = P/P0, by recognizing that the
volume should approach infinity at the saturation pressure, and, mathematically, it approaches infinity as x approaches
one from the left. For x to approach one, pressure must approach 1/CL. First, we show that Equation 26 from the
paper approaches infinity as P approaches 1/CL. We specifically require it to approach from the left because volume
approaches negative infinity if we come from the right. In Lean, this looks like :

lemma BET.tendsto_at_top_at_inv_CL
: filter.tendsto brunauer_26
(nhds_within (1/C_L) (set.Ioo 0 (1/C_L)))
filter.at_top:=

The function filter.tendsto is the generic definition of the limit. It has three inputs, the function, what the independent
variable approaches, and what the function approaches, in that order. We split this into three lines to better visualize
what is happening. First, we are using the object brunauer_26, which is the BET equation as a function of pressure in

24

https://atomslab.github.io/LeanChemicalTheories/adsorption/langmuir_kinetics.html
https://atomslab.github.io/LeanChemicalTheories/adsorption/BETInfinite.html#tendsto_at_top_at_inv_CL


Formalizing Chemical Physics A PREPRINT

terms of x. Next, (nhds_within (1/C_L) (set.Ioo 0 (1/C_L))) is how we say approaches 1/CL from the left. nhds_within
means the intersection of a neighborhood, abbreviated as nhds, and a set. A neighborhood of a point is the open
set around that point. set.Ioo designates a left-open right-open interval. Here we have the interval (0, 1/CL). The
intersections of the neighborhood and this set constrains us to approach the neighborhood from the left. The final part is
filter.at_top which is a generalization of infinity, and just says our function approaches infinity.

In the original derivation done by Brunauer et al, they wish to show that P0 = 1/CL because as pressure approaches
each of these values, volume approaches infinity, these two values are equal. It should be noted that this idea is only true
if C, the BET constant, is greater than or equal to one. If not, the function has two points where it hits infinity in the
positive pressure region. We also have problems showing the congruence of such a fact in Lean, since such a relation
has yet to be formalized and the congruence of two nhds_within has not been shown. For now, we use the lemma
above to prove a simplier version of the theorem where we assume P0 = 1/CL, and show that with this assumption, V
approaches infinity. In Lean, this looks like :

theorem brunauer_27
(h1 : P_0 = 1/C_L)
: filter.tendsto brunauer_26 (nhds_within (P_0) (set.Ioo 0 (P_0))) filter.at_top:=

The proof of this theorem involves rewriting h1, and then applying the lemma proved above. While we would prefer
to prove that P0 = 1/CL, this proof will serve as a placeholder, until Mathlib builds out more math related to the
congruence of this subject. This theorem does not use a lcoal definition, like Langmuir, because P0 is already defined
as a variable using constant.

Finally, we formalize the derivation of Equation 28 from the paper, givne by Equation 27.

V

A ⇤ V0
=

CP

(PO � P )(1 + (C � 1)(P/P0)
(27)

Just like Equation 7, we first define Equation 27 at an object then formalize the derivation of this object. In Lean, the
object looks like :

def brunauer_28 := � P : R, C*P/((P_0-P)*(1+(C-1)*(P/P_0)))

Now we can prove a theorem that formalizes the derivation of this object :

theorem brunauer_28_from_seq
{P V_0: R}
(h27 : P_0 = 1/C_L)
(hx1: (x P) < 1)
(hx2 : 0 < (x P))
: let Vads := V_0 *

P0 (k : N), ↑k * (seq P k),
A :=

P0 (k : N), (seq P k) in
Vads/A = V_0*(brunauer_28 P) :=

Rather then explicitly solving the sequence ratio, like we did for Equation 7, we can now use the theorem that derived
Equation 7 to solve the left hand side of our new goal. We then have a goal where we show that Equation 27 is just a
rearranged version of Equation 7, which is done through algebraic manipulation.

5.2.3 The antiderivative in Lean

For a function, f , the antiderivative of that function, given by F , is a differentiable function, such that the derivative
of F is the original function f . In Lean, we formalize the general antiderivative and show how it can be used for
several specific applications, including the antiderivative of a constant, of a natural power, and of an integer power. We
generalize our functions as a function from a general field onto a vector field, f : K ! E. This allows us to apply the
theorems to any parametric vector function, including scalar functions.

Our goal is to show, from the assumption that f(t) is the derivative of F (t) and f(t) is the derivative of G(t), then we
have an equation F (t) = G(t) + F (0), which is the antiderivative of f(t). G(t) is the variable portion of the equation.
For example, if the antiderivative is of the form F (t) = t3 + t + 6, then G(t) = t3 + t and F (0) = 6. F (0) is the
constant of integration, but written in a more explicit relation to the function. Since G(t) is the function of just variables,
we have as another premise G(0) = 0.

25

https://atomslab.github.io/LeanChemicalTheories/adsorption/BETInfinite.html#brunauer_27
https://atomslab.github.io/LeanChemicalTheories/adsorption/BETInfinite.html#brunauer_28
https://atomslab.github.io/LeanChemicalTheories/adsorption/BETInfinite.html#brunauer_28_from_seq


Formalizing Chemical Physics A PREPRINT

The first goal is to show that a linearized version of the antiderivative function holds. We can rewrite F (t) so that is
linear by moving G(t) to the left hand side, leaving us with an equation that equals a constant.

F (t)�G(t) = C (28)

Thus, we can relate any two points along this function, 8xy, F (x)�G(x) = F (y)�G(y). To show this holds, we
recognize that if Equation 28 is constant, then the derivative of this function is equal to zero.

d

dt
(F (t)�G(t)) = 0 (29)

Next, we apply the linearity of differentiation to Equation 29 to get a new form: d

dt
F (t)� d

dt
G(t) = 0, and rearrange

to get:
d

dt
F (t) =

d

dt
G(t) (30)

From the first premise, we assumed that f(t) is the derivative of F (t). From our second premise, we assumed that f(t)
is also the derivative of G(t). Thus, applying both premises, we can simplify Equation 30 to:

f(t) = f(t) (31)

which we recognize to be correct.

Now that we have a new premise to use, given by Equation 32, we can specialize this function to get our final form.

8xy, F (x)�G(x) = F (y)�G(y) (32)

We specialize the universals by supplying two old names. For x, we use t (the variable we have been basing our
differentiation around), and for y we use 0. Thus, Equation 32 becomes:

F (t)�G(t) = F (0)�G(0) (33)

Our third premise was that G(0) = 0, so we can simplify and rearrange Equation 32, to get our final form:

F (t) = G(t) + F (0) (34)

Which satisfies the goal we laid out in the beginning. In Lean, the statement of this theorem looks like :

theorem antideriv
{E : Type u_2} {K: Type u_3} [is_R_or_C K] [normed_add_comm_group E]
[normed_space K E]
{f F G: K → E} (hf : 8 t, has_deriv_at F (f t) t)
(hg : 8 t, has_deriv_at G (f t) t)
(hg’ : G 0 = 0)
: F = � t, G t + F(0) :=

Applying the antideriv theorem to examples is very straight forward. We will show an example by deriving the
antiderivative of a constant function. In Lean, we would state this as :

theorem antideriv_const
(F : K → E) k : E
(hf : 8 t, has_deriv_at F k t):
(F = (x : K)), x·k + F 0) :=

Here we say that the derivative of F (x) is the constant k, and want to show that F (x) = x · k + F (0), where the "·"
operator stands for scalar multiplication. To use the antideriv theorem, we must show that its premises follow, meaning
we must show:

8 t, has_deriv_at F k t
8 t, has_deriv_at x·k k t
0·k = 0

The first goal is explicitly given in our premises, hf. The next goal can be derived by taking out the constant, and
showing that the function x has a derivative equal to 1. The final goal can be easily proven by recognizing zero
multiplied by anything is zero. Thus, we have formalized antiderivative of a constant function, and can use this same
process for any other function. The antiderivative is especially important for deriving the kinematic equations, as seen
in the next section.

26

https://atomslab.github.io/LeanChemicalTheories/math/antideriv.html#antideriv
https://atomslab.github.io/LeanChemicalTheories/math/antideriv.html#antideriv_const

	Introduction
	Theorem provers for chemical theory
	The Lean theorem prover

	Methods
	Formalized Proofs
	Langmuir Adsorption: Introducing Lean Syntax and Proofs
	Langmuir Revisited: Introducing Functions and Definitions in Lean
	BET Adsorption: Formalizing a complex proof
	Classical Thermodynamics and Gas Laws: Introducing Lean Structures
	Kinematic equations: Calculus in Lean

	Conclusions and Outlook
	Supporting Information
	Additional Background
	Additional Proofs
	Langmuir Adsorption
	BET Adsorption
	The antiderivative in Lean



