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1 Name of compounds presented in Figure 2

Figure S1 shows the list of compounds used for the CompBatPET database construc-

tion. The commercialized name of these compounds is: Compound 1: Phthalic anhydride,

Compound 2: [Bi-2,5-cyclohexadien-1-ylidene]-4,4’-Dione, Compound 3: 1,2-Benzoquinone ,

Compound 4: 1,4-Benzoquinone , Compound 5: 1,4-Naphthoquinone, Compound 6: Benzofuran-

4,7-Dione, Compound 7: 2-Cyclopentene-1,4-Dione, Compound 8: Maleic anhydride, Com-

pound 9: 2H-Pyran-2,5(6H)-Dione, Compound 10: 1,3-Dioxoindan, Compound 11: 9,10-

Phenanthraquinone, Compound 12: 1,8-Pyrenedione, Compound 13: Acenaphthenequinone,

Compound 14: Anthraquinone, Compound 15: 6,12-Chrysenedione.

Figure S1: List of compounds accompanied by the 2D chemical structure depiction. Com-
pounds are numbered from 1 to 15.

S3



2 Data distribution

Table S1: Detailed descriptive statistics: mean, standard deviation (µ), minimum value
(xmin), maximum value (xmax), lower quartile (Q1), median, higher quartile (Q3). There are
8214 samples (compounds) in the dataset that underwent different reactions.

Target variable mean µ xmin xmax Q1 median Q3

pKa03 8.059 2.401 −2.721 22.396 7.038 8.273 9.154
pKa14 −1.306 1.879 −10.207 4.616 −2.546 −1.189 0.128
pKa25 −8.883 2.966 −21.992 0.095 −11.014 −8.576 −6.452
pKa36 11.880 3.299 −2.836 27.626 10.365 11.369 13.212
pKa47 4.909 1.821 −6.707 15.660 4.106 5.028 5.885
pKa58 −4.206 2.686 −17.446 6.412 −6.040 −4.278 −2.293
Ered.01 0.872 0.366 −0.502 1.954 0.744 0.897 1.037
Ered.12 1.204 0.344 −0.134 2.426 1.041 1.203 1.372
Ered.34 0.314 0.356 −0.909 1.402 0.156 0.355 0.509
Ered.45 0.752 0.347 −0.401 2.027 0.589 0.768 0.919
Ered.67 −0.295 0.425 −1.629 1.696 −0.557 −0.246 −0.054
Ered.78 0.031 0.426 −1.312 2.180 −0.163 0.075 0.229
E004 0.794 0.385 −0.586 1.771 0.658 0.863 0.987
E015 0.675 0.365 −0.577 1.917 0.487 0.729 0.871
E037 0.412 0.409 −1.060 2.301 0.255 0.454 0.612
E048 0.323 0.458 −1.220 2.722 0.109 0.372 0.516

Table S1 reports the summary statistics for our data. There are 8213 samples (com-

pounds) in the dataset that underwent different 6 ET, 6PT, and 4 PET reactions. Ered.,

pKa , and E0 are the calculated target variables. Mean, standard deviation (µ), mini-

mum value (xmin), maximum value (xmax), lower quartile (Q1), median, higher quartile (Q3)

provide detailed information on the distribution of data.
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3 Performance metrics

In this study, accuracy and performance refer to one or more metrics defined below. The

formulas below denote N as the number of data points, ŷi as the predicted value of ith

sample, and yi as the corresponding DFT (true) value:

• Coefficient of determination (R2):

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳi)2
,

where

ȳ =
1

N

N∑
i=1

yi.

• Root Mean Squared Error (RMSE):

RMSE =
1

N

N∑
i=1

(yi − ŷi)
2.

• Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|yi − ŷi|.
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4 Spin-up orbitals vs. spin-down orbitals

Figure S2: Comparing the energy of the spin-up and spin-down channels for (a) HOMOs of
reactants participating in oxidation (ET) reactions, (b) HOMOs of reactants participating
in PET reactions, (c) LUMOs of products produced by oxidation (ET) reactions, and (d)
LUMOs of products produced by PET reactions.

When comparing the energy of the orbitals of the spin-up and spin-down channels, shown

in Figure S2 (a) and (b), it can be shown that the HOMO spin-up channel has a greater

energy level than the spin-down channel for the reactants involved in the ET and PET

reactions. Therefore, when we refer to HOMO, we mean those spin-up channel orbitals.

Figure S2 (c) and (d) illustrate similar plots for LUMOs of products from ET and PET

reactions, demonstrating that orbitals in the spin-down channel serve as LUMO.
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5 Importance of MOs of reactants in training models

Figure S3: SHAP summary plot for elucidating the global feature influences on the (a) Ered.,
(b) pKa , and (c) E0 trained models. Feature Ex

y indicates the energy of x orbital in y spin
state. The baseline, positioned at zero, equals to an average target value in each case. The
SHAP value (impact on model output) indicates the impact of feature missingness on the
model prediction. The importance of the feature increases from bottom to top, e.g., ESpinUp

HOMO

and ESpinUp
LuMO have the most and less importance in Ered. prediction. In each plot, thousands

of individual points from the training dataset are plotted, with a higher value being more
pink/yellow/red, and a lower value is more cyan/purple/blue. This is depicted by the feature
value bar on the right of each plot.

The importance of various feature variables extracted from reactants in training models

can be seen in Figure S3. A SHAP value (impact on model output) 0 for a feature corresponds

to the average prediction using all the other possible combinations of features except for the

feature of interest. For instance, the SHAP value 0 for ESpinUp
HOMO corresponds to the average

prediction of models having different combinations of features (excluding ESpinUp
HOMO). SHAP

value of 1 for a feature in Figure S3(a) means that the value of that feature increases the

model’s output by 1. Our results show that ESpinUp
HOMO is the most important feature for training

the models that predicted Ered. and E0. Indeed, those orbitals placed at the edge of the

HOMO-LUMO gap play a crucial role in the feature space used for pKa prediction.
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6 Correlation between key MOs and target variables

Figure S4: Relationship between key features evaluated by SHAP and the target variables:
(a) ESpinUp

HOMO vs. Ered., (b) ESpinUp
HOMO vs. E0, (c) ESpinDown

LUMO vs. Ered., and (d) ESpinDown
LUMO vs. E0.

The reactants involved in the ET and PET reactions, respectively, were used to extract the
features used in (a) and (b). While the features employed in (c) and (d) were extracted from
the products resulting from the ET and PET processes, respectively.

Figure S4 shows the correlation between the most crucial features (MOs) for predicting

Ered. and E0. The reactant’s HOMO and the product’s LUMO participating in the oxidation

reactions are inversely correlated to Ered. and E0.
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7 Importance of MOs of products in training models

Figure S5: SHAP summary plot for elucidating the global feature influences on the (a) Ered.,
(b) pKa , and (c) E0 trained models. Feature Ex

y indicates the energy of x orbital in y
spin state. The baseline, positioned at zero, equals an average target value in each case.
The SHAP value (impact on model output) indicates the impact of feature missingness on
the model prediction. The importance of the feature increases from bottom to top. In each
plot, thousands of individual points from the training dataset are plotted, with a higher
value being more pink/yellow/red, and a lower value being more cyan/purple/blue. This is
depicted by the feature value bar on the right of each plot.

Figure S5 illustrates how the target variables are related to the features of products. By

taking into account a product’s attributes, Ered. and E0 are inversely related to ESpinDown
LUMO .

Additionally, the pKa prediction is highly sensitive to HOMOs.
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8 Merck extracted strcutures

Figure S6: Experimentally synthesized molecules extracted from Merck.

A list of the compounds utilized to generate the external data set for ML model vali-

dations is shown in Figure S6. We selected these compounds based on their (i) ability to

go through similar reduction reaction processes, i.e., their ketone group content, and (ii)

physical availability. To arrive at this, we browsed Merck’s website.
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9 Example: 2,2-propionate ether anthraquinone (2,2PEAQ)

Figure S7: Square representation for 2,2PEAQ-H2 oxidation reactions. On top, you see
the structure of 2,2PEAQ. The horizontal direction indicates an ET reaction. Numbers
are oxidation potential in V. The vertical direction indicates PT (acid/base reaction con-
stant). Numbers are pKa which are unitless. The diagonal direction indicates proton-coupled
electron transfer reduction potential (V). ML models were used to predict the numbers in
parentheses, where ECFPs are descriptors.

Figure S7 shows the schem of squares representations of 2,2PEAQ species undergoing

the reaction below:

2, 2PEAQ− H2 −−⇀↽−− 2, 2PEAQ+ 2H+ + 2 e−. (S1)

2,2PEAQ is an abbreviation for 2,2-propionate ether anthraquinone and 2, 2PEAQ− H2

represents the fully reduced form of the compound.
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10 Python packages and dependencies

To successfully run the Jupyter notebook, Python 3.10 or higher is required. Previous ver-

sions might also work fine. We leave it to the readers to check. Indeed, the following libraries

are required to be installed. The dependencies found in PyPI.

shap==0.42.1

numpy==1.24.3

pandas==2.0.2

matplotlib==3.7.1

natsort==8.4.0

pathlib==1.0.1

scikit-learn==1.2.2

jupyterlab==4.0.1

ase==3.22.1

seaborn==0.12.2

rdkit==2023.3.1

scipy==1.10.1

In addition "README" and "requirements.txt" files are included in the folder "03_pynb_scripts"

that was submitted to the Zenodo DB, to instruct for an easy installation of the packages.
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