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GP Kernel selection process

Here is the performance metric to compare different kernel combination's performance and find the best
kernel/combination of kernels for the GPs. This metric is calculated after 500 iterations of Active learning
using the following equation.

100 - AC, + 100 - AC, + AC,, + MRE, + MRE,
Performance = D

5

This parameter (shown in the y-axis of figure S1, S3, and S7-S9) is a lumped-variable for five different
parameters. Each of these five parameters for the kernel shows a desired performance from the Active
learning protocol. A low value of all these parameters are desirable. Also, each term in the above equation
in performance calculation corresponds to the mean of accuracy over 500 iterations, not just a point at 500
iterations. This is done to find the cumulative performance of the kernel combinations.

The first two terms shows absolute distance of the accuracy from the desired value of 100% (for the dual
GPs) for gas species 1 and 2 in the mixture. Further the distance parameter is normalized with maximum
and minimum values, so that final parameter is within 0 and 1.

(100 - AC)) - min(100 - AC,)
max(100 - AC;) - min(100 - AC,)

100-4C, = )

The third parameter is the difference between accuracies of the species of C and L normalized by
maximum and minimum value of the parameter.

(|AC. - AC,|) - min(|AC; - AC,))

3
max(|AC. - AC,|) - min(|AC. - AC,|) ©

The fourth and the fifth shows the mean relative errors. Also, the first three accuracy-based parameters
are normalized with respect to maximum and minimum values, while the MRE-based parameters are
scaled with maximum value only. This is done to because many kernels were too close to the lowest
MREs and hence they would be very close to 0 if we had used the min-max scaling. We just scaled it with
respect to maximum value so that the MRE distribution remains comparable with accuracy distribution in
the visualization.



MRE,= ——— (4)
maxii(MRE))

Thus, we get a final performance-based parameter, which tells us a how well a kernel combination is
performing with respect to other combinations. Therefore, the final parameter encapsulates whether the
GPs are close to 100% accuracy, how GPs accuracies are close to one another, and how low the MREs
are (all of them are given an equal weight). We select the kernel/kernel combination with the lowest value
of this performance metric.
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Figure S1. Performance plots for kernel optimization for CO,-CH, mixture after 500 iterations of active
learning (all the parameters are averaged over all the iterations leading to 500t iteration). The x-axis shows
the kernel index combination. For reference, indices 1, 2 and 3 are: rational quadratic (RQ), Matérn (M),
and radial basis function (RBF). The next indices (from 4 to 12) follows the combination of either of these
two but not three at a time. Index 4 would be RQ + RQ, index 5 RQ + M, 6 would be RQ + RBF, and so
on. The y-axis on the right shows the performance metrics, which encapsulates five entities from the dual-
GPs. First two terms quantify how close the accuracies of kernels to 100. The third, how close the two
accuracies are to one another. Fourth and fifth ones finds the mean relative errors (MRESs) for both the GPs.
In essence, the optimization is done to find the kernel combination which gives the minimum of this
lumped-performance parameter. Here, we find the Index 3 (RBF) to be the best in the performance,
followed closely by dual-RBF at Index 12, and then Index 1 by a single RQ.

Figure S1 shows the performance of all kernels for CO,-CH, mixture. We find that Index 3 (a single
RBF) outperforms all the other combinations. Hence, we go forward with RBF for the final fit. Also, for
the kernel optimizations of Xe-Kr and H,S-CO, systems, we found RQ (Index 1) to be the best performer.
It is interesting to note that single kernels performed well and particularly RBF which has only two

AC
parameters. In figure S1, the RBF and RQ kernels have the lowest value of the parameters, [100 - COZ|

AC

and [100 - CH4|. This shows these kernels candidates showed a higher accuracy after 500 iterations.
Their MREs were just marginally lower than other combination, however their accuracies were much
closer which provided a boost to the performance. We have added the kernel optimization results for the
other two mixtures in the figure S3.



RASPA Input file for GCMC simulations

o The values of features P, X,/X,, and T were changed according with the states

e The molecules names and definition corresponds to the RASPA forcefield files and folder
location. The same input file was used for all the three mixtures, only the adsorbate forcefield was
changed in simulation.

SimulationType MonteCarlo
NumberOfCycles 50000
NumberOflnitializationCycles 5000
PrintEvery 1000

ContinueA fterCrash no
WriteBinaryRestartFileEvery 2000
UseChargesFromCIFFile yes

Forcefield GenericMOFs

RemoveAtomNumberCodeFromLabel yes

Framework 0
FrameworkName Cu-BTC
UnitCells 1 11
ExternalTemperature T

ExternalPressure P

Component 0 MoleculeName CO2/H2S/Xe
MoleculeDefinition TraPPE
MolFraction X
TranslationProbability 0.5
RotationProbability 0.5
ReinsertionProbability 0.5

RegrowProbability 0.5



IdentityChangeProbability 1.0
NumberOfldentityChanges 2
IdentityChangesList 01

SwapProbability 1.0

CreateNumberOfMolecules 0

Component 1 MoleculeName methane/CO2/Kr

MoleculeDefinition TraPPE

MolFraction X,

TranslationProbability 0.5

ReinsertionProbability 0.5

RegrowProbability 0.5

RotationProbability 0.5

IdentityChangeProbability 1.0
NumberOfldentityChanges 2
IdentityChangesList 0 1

SwapProbability 1.0

CreateNumberOfMolecules 0
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Figure S2. Error maps for GP relative error and the absolute relative error (true error on comparison with
GCMC) for CO, in the CO,-CH,4 mixture at different stages of AL. a) Trained only on the initial dataset,
b) Initial dataset + 1 point, c) Initial + 5 points, d) Initial + 10 points. We observe that as more points are
provided to the GPs, both the GP’s perceived error and the relative error starts to look similar. The AL
only up to 10 points is shown. For the case of CO,-CH,, the AL goes to add 21 extra point besides the
initial training set. Here only till 10 points of AL is shown to highlight the changes in the error as new
points based on their uncertainty are provided to the GP.



a) Adsorption isotherm for a = 1071 at Xco, = 0.02 b) Adsorption isotherm for @ = 1072 at Xco, = 0.02
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Figure S3. Comparing the adsorption isotherm plots for CO,—~CH4 mixtures at Xco, = 0.02 at 300K for
different regularization parameter @ (for a single RQ kernel). The plot consists of @ of a) 107!, b) 1072, ¢)
103, d) 104, ¢) 103, and f) 10°. The goal was to avoid high-fluctuation which can results from a high @,
which can provide a high-threshold for variance. We observe that fluctuations cease to exist at @ of 1073,
The next consideration was a balanced fit between the GP and the GCMC adsorption data. We find at @ of
10~* gives a better fit for both CO, and CH,. Hence, we keep the value for this gas mixture for both the P—
X and P-X-T phase space active learning.
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Figure S4. Kernel optimization results after 500 iterations of Active learning in the P-X phase space for a)
Xe—Kr and b) H,S—CO,. The performance parameter in left side y-axis is a lumped parameter for five
variables which are listed in the legends. From both a) and b), we observe that the index 1 is performing
the best for both these systems. In figure 2, we also observe similar outcome for CO,—CH,. Thus, Rational

Quadratic (RQ) performs best for all the three systems.
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Figure S5. Error heat map for Xe—Kr system at the 90% PAC cut-off for a) Xe, and b) Kr. We find the
densest region of high errors lies at low Xe-high Kr range. This again corresponded to the component that
is more attractive to the Cu-BTC. Also, the errors are more under-prediction, only a small section
corresponds to over-prediction.
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Figure S6. Error heat map for H,S—CO, system at the 90% PAC cut-off for a) H,S, and b) CO,. We find

the densest region of high errors lies at low H,S-high CO, range.
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Figure S7. Adsorption plots for Xe—Kr system (RQ kernel, Index 1 of figure S2a) for the P-X phase space.
a) Xx. = 0.02, 0.06 and 0.10, b) Xx. = 0.20, 0.40 and 0.60, and c) Xx. = 0.90, 0.94 and 0.98. The highest
deviation of the GP-predicted adsorption is seen for Xe at the low concentration of Xy.. The GP-predicted
adsorption matches well with GCMC beyond this range. Also, GP-model accurately captures Kr uptake for
nearly all the pressure and temperature range.
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Figure S8. Adsorption plots for H,S—CO, system (RQ kernel, Index 1 of figure S2b) for the P-X phase
space. a) Kiys _ 0.02, 0.06 and 0.10, b) Kitys _ 0.20, 0.40 and 0.60, and c) Kitys 0.90, 0.94 and 0.98. The
highest deviation of the GP-predicted adsorption is seen for H,S at medium concentration of XHZS. The GP-
predicted adsorption matches well with GCMC at low and high values of XHZS. Also, GP-model accurately
captures CO, uptake on the low and high concentration of XHZS. However, the errors are higher for CO2 in

X
medium concentration of ~ 2%, though less compared to that of H,S.
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Figure S9. Performance plots for kernel optimization for CO,-CH4 mixture after 500 iterations of active
learning for P-X-T feature space. Here again there are 39 candidate kernel combinations. Like P-X feature,
indices 1, 2 and 3 are: rational quadratic (RQ), Matérn (M), and radial basis function (RBF), and the rest of
the combinations follows adding the kernels in that sequence only. Here, we find the best kernel to be index
39, which is RBF + RBF + RBF, followed very closely by kernel 12 which is dual RBF, followed by index
1 (RQ), and then index 3 (RBF). With these observations, RBF kernels for the GP provides a good fit for
the CO,-CH, mixture.
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learning for P-X-T phase space. The best fit here corresponds to index 39 (triple RBF with performance:
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the ground truth) converges with the GP MRE. However, as we had set the accuracy threshold of 90%, the
AL process will finish much earlier for a desired performance. This is just to show if the AL was to progress
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Figure S14. Relative error heat maps at the 90% PAC cut-off for Xe in the Xe-Kr mixture with triple-RBF
kernel, a) Xx,=0.02,0. 116, and 0.212, b) Xx. =0.308, 0.5, and 0.692, and ¢) Xx. = 0.788, 0.884, and 0.98.
We find the region of Xy, = 0.116 (X, = 0.884) having the highest errors for Xe uptake, with most errors
showing that GP model in under-predicting. After this region, the error regions become less dense, with
slight over-prediction by the GP for Xe compared to GCMC.
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Figure S15. Relative error heat maps at the 90% PAC cut-off for Kr in the Xe-Kr mixture with triple-RBF
kernel, a) X, =0.02, 0. 116, and 0.212, b) Xk, =0.308, 0.5, and 0.692, and ¢) X, = 0.788, 0.884, and 0.98.
We find the region of X, = 0.116 (Xx. = 0.884) having the highest errors for Kr uptake.
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Figure S18. Adsorption isotherms at the 90% PAC cut-off for regions with highest relative errors for CO,
X X
in CO,-CH, mixture (triple-RBF kernels), a)  “°2=0.116 and T = 200, 240 and 280 K, b)  “°2=0.116

X X
and T = 320, 360 and 400 K, and ¢) €0y = 0.308, 240, 280, and 320 K. We find the region at €0y =
0.116 having the highest errors for CO, uptake. The model is also under-predicting adsorption of CO, at

Xco, _ . Xco, _
2=0.116, and then over-predicts fromon ~~2=0.308.
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Figure S19. Adsorption isotherms at the 90% PAC cut-off for regions with highest relative errors for CHy
X X X
in the CO,-CH, mixture, a) “"4=0.02 ( “°2=0.98) T=240K, "4=0.116 and T = 200 and 400 K, b)
Xcu,_ _ Xcu,_ _ Xcu,_ _ Xcu,_
4=0.212and T=240 K, 4=0.308 and T =240 K, 4=0.5and T =280 K, and ¢) 4=0.5 and

X X
T=320K, “4=0.692 and T=200K, ~ “"4=0.788 and T =200 K. The region with most errors for CH,
lies where adsorption is not very high. In fact, for a) it is evident that CH, uptake is near 0. Hence, the
MRE is high at these points. The GP fit, we observe, corresponds in the same trend as the GCMC for all

these regions.
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Figure S20. Adsorption isotherms at the 90% PAC cut-off for regions with highest relative errors for Xe
in Xe-Kr mixture (triple-RBF kernels), a) Xx. = 0.116 and T =200, 240 and 280 K, b) Xx.=0.116 and T
=320, 360 and 400 K, and ¢) Xy, =0.212, 240 K, and Xy, = 0.308 and T =200, and 240 K. We find the
region at Xx. = 0.116 having the highest errors for Xe uptake. The model is also under-predicting
adsorption of Xe at Xy, = 0.116, and then slightly over-predicts from on Xx. =0.212 and 0.308.
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Figure S21. Adsorption isotherms at the 90% PAC cut-off for regions with highest relative errors for Kr
in Xe-Kr mixture (triple-RBF kernels), a) Xy, = 0.02 (Xx.=0.98), T=200 K, and X, =0.116, and T =
200, and 280 K, b) Xk, =0.116 and T = 280, 360 and 400 K, and c) Xk, =0.212, 0.308, 0.50 at 220 K. We
find the region at Xx. = 0.116 having the highest errors for Xe uptake. The model is also under-predicting
adsorption of Xe at Xy, = 0.116, and then slightly over-predicts from on Xx. =0.212 and 0.308.
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Adsorption isotherm at Xy,s = 0.116, Temp = 200 K
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Figure S22. Adsorption isotherms at the 90% PAC cut-off for regions with highest relative errors for H,S
X X
in H,S-CO, mixture (RQ kernel), a) ~ "2° =0.116 and T = 200, 320 and 400 K, b) ~ "2*=0.212 and T =
X X X
280, 2°=0.308, T=280 and 320 K, and ¢)  "2°=0.5, and T=320K, and  "2°=10.692 and T = 320 K,

XHZS =0.788, and T = 320 K. One observation is this, since both H,S and CO, have strong interaction
with the Cu-BTC MOF, the H,S doesn’t necessarily replace CO2 at low concentration of H,S compared
to how fast CO, itself was able to replace CH, at low CO, concentrations. These means the sharp inverse
adsorption trend that was observed for CO2 in the CO,-CH, mixture at low CO, concentrations are not
seen here initially at low H,S levels. But as the H,S concentration increases to level of 30% (mole fraction
of 0.308), we start to see those inverse trends in adsorption. Therefore, the errors trends are also pushed
back, much more uniformly, across different mole fraction range.
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Figure S23. Adsorption isotherms at the 90% PAC cut-off for regions with highest relative errors for CO,
in H,S-CO, mixture (RQ kernel) for the P-X-T phase space, a) XCOZ =0.116 (XHZS =1- XCOZ: 0.884) and
T = 240, 280 and 360 K, b) Xco, 0116 and T = 320, Keo, _ 0.212, and T= 360 K, Xeo, _ 0.308, and T=
360 K, and c) Xeo, _ 0.692, and T = 320 K, and Xco,_ 0,788 and T = 320 K, Keo,_ 0.884, and T = 320

X
K. We find the region at €02=0.116 having the same trend as GCMC but under-prediction at low

temperatures (T = 240 and 280 K). The error for CO, beyond this mole-fraction value is always over-
prediction but again the trend is being followed.
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Figure S24. Correlation plots for CO,-CH, mixture representing all the points sampled in the P-X-T after
the AL is complete after 90% PAC limit is met. We see for pressure most points are located at low and
high point values, followed by a similar distribution in the mole-fraction features. Finally, temperature
has the most distribution with respect to the points sampled.
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Figure S25. Correlation plots for Xe-Kr mixture representing all the points sampled in the P-X-T after the
AL is complete after 90% PAC limit is met. We see for pressure most points are located at low and high

point values, followed by a similar distribution in the mole-fraction features. Temperature again has the

most distribution with respect to the points sampled.
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Figure S26. Correlation plots for H,S-CO, mixture representing all the points sampled in the P-X-T after

the AL is complete after 90% PAC limit is met. We see for pressure most points are located at low and
high point values, followed by a similar distribution in the mole-fraction features. Here as well,
temperature has the most distribution with respect to the points sampled.
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Figure S27. Comparing GP predicted CO, and CH, uptakes with experimental values for different ratios
of CO, and CH,at 303K Plota) 0.25: 0.75 of CO,:CH,4, b) 0.50: 0.50 of CO,:CH,, and c) 0.75: 0.25 of
CO,:CH,, The GPs here were trained using AL for P-X-T for the CO,-CH, mixture and it was terminated
at PAC cut-off of 90%. We find very close agreement with GP predictions and experimental data. It is to
be noted that the GPs were trained on GCMC data. Also, the experimental data was taken from Hamon et.
al and the BISON dataset by Cai and coworkers was useful to obtain the data points. [1, 2]
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