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I. Predictive Modeling

A. Leveraging LLMs for Accurate Molecular Energy Predictions

Table I. LIFT for molecular atomization energies on the QM9-G4MP2 dataset. Metrics for models tuned on 90%
of the QM9-G4MP2 dataset (117,232 molecules), using 10% (13,026 molecules) as a holdout test set. Note that the
metric used for the baseline results [1] is MAE, whereas this work used the MAD. The results indicate that the LIFT
framework can also be used to build predictive models for atomization energies, that can reach chemical accuracy
using a �-ML scheme.

mol. repr. & framework G4(MP2) Atomization Energy (G4(MP2)-B3LYP) Atomization Energy
R2 MAD / eV R 2 MAD / eV

SMILES: GPTChem 0.984 0.99 0.976 0.03
SELFIES: GPTChem 0.961 1.18 0.973 0.03
SMILES: GPT2-LoRA 0.931 2.03 0.910 0.06
SELFIES: GPT2-LoRA 0.959 1.93 0.915 0.06

SchNet baseline - - - 0.0045
FCHL baseline - 0.0223 - 0.0052

Accurate prediction of chemical properties has long been the ultimate objective in computational chemistry
and materials science. However, the signi�cant computational demands of precise methods often hinder their
routine application in modeling chemical processes. The recent surge in machine learning development, along
with the subsequent popularity of large language models (LLMs), o�ers innovative and e�ective approaches
to overcome these computational limitations. Our project takes steps toward establishing a comprehensive,
open-source framework that harnesses the full potential of LLMs to accurately model chemical problems and
uncover novel solutions to chemical challenges. In this study, we assessed the capability of LLMs to predict the
atomization energies of molecules at the G4(MP2) [2] level of theory from the QM9-G4MP2 dataset [3, 4]
using solely string representations for molecules, speci�cally, SMILES [5] and SELFIES [6, 7]. G4(MP2)
is a highly accurate composite quantum chemistry method, known for its accuracy within 1:0 kcal=mol for
molecular energies compared to experimental values, making atomization energy an ideal property to predict
to demonstrate the usefulness and impact of LLMs on the �eld of computational chemistry.

Jablonka et al. [8] recently demonstrated the potential of �ne-tuning pre-trained LLMs on chemistry
datasets for a broad array of predictive chemistry tasks. As an initial validation for our project, we �ne-
tuned generative pretrained transformer (GPT)-3 [9] to learn how to reproduce a molecule's atomization
energy at the G4(MP2) level of theory, using its SMILES or SELFIES string through the prompt, \What is
the G4MP2 atomization energy in kcal/mol of 'SMILES/SELFIES string of a molecule'?" Additionally, we
�ne-tuned LLMs to predict the atomization energy di�erence between B3LYP/6-31G(2df,p) and G4(MP2)
levels of theory with the prompt, \What is the G4MP2 and B3LYP atomization energy di�erence in kcal/mol
of 'SMILES/SELFIES string of a molecule'?", which mirrors the �-machine learning (�-ML) schemes [10]
found in the existing literature.

Figure 1. Illustration of the molecular property prediction work
ow, from molecule representation to model �ne-tuning
and performance evaluation.
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We �ne-tuned the GPT-3 (Ada) model using 90% of the QM9-G4MP2 dataset (117,232 molecules) for
eight epochs with the GPTChem [8] framework's default settings. The remaining 10 % (13,026 molecules)
was kept as the hold-out set, following the same data split as Ward et al. [1], to evaluate the model's
performance. Table I summarizes the regression metrics for the hold-out set. The strong correlation between
the predicted and ground truth values suggests that the model e�ectively learned the structural information
from the molecular string representation. Although the MAD remains relatively high compared to state-of-
the-art models in the literature [1, 11] that utilize a molecule's full 3D structural information for descriptor
construction, we achieved chemical accuracy (< 1:0 kcal=mol � 0:04 eV) for the �-ML task. Consequently,
this approach can predict G4(MP2) energies with high accuracy when B3LYP energies are available. We
also compared the model's performance using SMILES and SELFIES molecular representations, with the
former proving marginally superior for predicting atomization energies, possibly due to its more compact
representation for molecules. We additionally calculated regression metrics for the G4MP2-Heavy dataset [1],
the results of which are provided in Table II.

Table II. Regression metrics, (Coe�cient of Determination), and MAD (Mean Absolute Deviation) for predicting
G4(MP2) and (G4(MP2)B3LYP) atomization energies for the G4MP2-Heavy dataset using a �ne-tuned GPT-3
model with GPTChem

mol. repr. & framework G4(MP2) Atomization Energy (G4(MP2)-B3LYP) Atomization Energy
R2 MAD / eV R 2 MAD / eV

SMILES: GPTChem 0.583 6.02 0.856 0.13
SELFIES: GPTChem 0.146 9.44 0.659 0.15

While GPT-3 �ne-tuning models are accessible through the OpenAI application programming interface
(API), their usage costs can become prohibitive for larger datasets, rendering hyperparameter searches and
other exploratory research economically unfeasible. Consequently, we aim to develop a free and open-source
framework for �ne-tuning LLMs to perform a wide range of predictive modeling tasks, encompassing chemical
property prediction and inverse design.

To �ne-tune a pre-trained LLM locally on a GPU instead of querying OpenAI's API, we employed the
Hugging Face parameter e�cient �ne-tuning (PEFT) library [12] to implement the low-rank adaptors (LoRA)
tuning paradigm [13]. Conventional �ne-tuning updates all model parameters, utilizing pretrained weights
from a large training dataset as a starting point for gradient descent. However, �ne-tuning memory-intensive
LLMs on consumer hardware is often impractical. The LoRA approach addresses this by freezing the model's
weights and tuning a low-rank adapter layer rather than the entire model, parameterizing changes concerning
the initial weights rather than the updated weights.

Using this approach, we �ne-tuned the smallest version of GPT-2 [14] (124 million parameters) for 20
epochs on the same 90 % training set as used in GPTChem, allocating 10 % of that training set for validation,
and computed metrics on the same 10 % hold-out set as in the GPTChem run, employing the same prompt
structure. Although the model performs well, it demonstrates slightly inferior performance to GPT-3 on
the G4MP2 task and moderately worse on the (G4(MP2)-B3LYP) task. This is not unexpected, given that
GPT-3 is a more recent model with substantially more parameters than GPT-2 (175 billion vs. 124 million)
and has exhibited superior few-shot performance on various tasks [15].

Moving forward, we plan to employ the LoRA tuning framework to �ne-tune other models, such as
LLaMA [16] and GPT-J, to investigate the impact of LLM selection on performance in chemistry-related
tasks. Moreover, we intend to experiment with molecular-input representations beyond string formats to
more accurately represent a molecule's 3D environment [17].

One sentence summaries

a. Problem/Task Predicting the atomization energies of molecules using large language models.
b. Approach Fine-tuning of GPT-3 ada model as well as PEFT of a small open-source model (GPT-2)

on SMILES to either directly predict the atomization energies or the di�erence between a lower and a higher
level of theory.
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c. Results and Impact Even though simpler, direct �ne-tuning for a complicated property on SMILES
leads to errors one order of magnitude higher than baselines, and the error can only be brought close to the
baselines with an � � ML approach|�rst demonstration of �-ML in the LIFT framework for chemistry.

d. Challenges and Future Work Since the predictions without 3D coordinates is not satisfactory, a
question for future work is how the approach would perform when provided with 3D coordinates.
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B. From Text to Cement: Developing Sustainable Concretes Using In-Context Learning

The inherently intricate chemistry and variability of feedstocks in the construction industry have limited
the development of novel sustainable concretes to labor-intensive laboratory testing. This major bottleneck
in material innovation has signi�cant consequences due to the substantial contribution of CO2 emissions of
materials in use today. The production of Portland cement alone amounts to approximately 8 % of anthro-
pogenic CO2 emissions [18]. The increasing complexity of alternative raw materials and the uncertain future
availability of established substitutes like 
y ash and granulated blast furnace slag make the experimental
development of more sustainable formulations time-consuming and challenging. Traditional trial-and-error
approaches are ill-suited to e�ciently explore the vast design space of potential formulations.

In previous studies, inverse design (ID) has been shown to accelerate the discovery of novel, sustainable, and
high-performance materials by reducing labor-intensive laboratory testing [19{21]. Despite their potential,
the adoption of these techniques has been impeded by several di�culties that are connected to the predictive
model at the core of ID: Incorporating domain knowledge typically requires extensive data collection to
accurately capture underlying relationships, which makes representing complex tasks in practice challenging
due to the high costs of data acquisition. Furthermore, ID necessitates formulating research problems
as search space vectors. This process can be unintuitive and challenging for lab personnel, limiting the
comprehension and adoption of these techniques. Lastly, sparse training samples in high dimensions can
lead to co-linearities and over�tting, negatively impacting prediction performance. With in-context learning

Figure 2. Using LLMs to predict the compressive strength of concretes. The left part illustrates the conventional
approach for solving this task, i.e., training classical prediction models using tabular data. Using the LIFT framework
LLM can also use tabular data but also leverage context information provided in natural language. Augmented with
this context, in-context-learning with LLM leads to a performance that outperforms baselines such as RFs or GPRs.

(ICL), Jablonka et al. [8] and Ramos et al. [22] demonstrated that LLMs o�er a solution by incorporating
context and general knowledge, providing 
exibility in handling non-numeric inputs and overcoming the
limitations of traditional vector space formulations (Figure 2).

In this study, we have adopted an ICL approach based on a dataset from a study by Rao and Rao [23].
The dataset comprises 240 alternative and more sustainable concrete formulations based on 
y ash and
ground granulated slag binders, along with their respective compressive strengths. The goal is to compare
the prediction performance of the compressive strength with ICL using thetext-davinci-003 model [24]
against established methods, RF [25].

Randomly sampled training subsets containing ten formulations are drawn. The prediction performance
is assessed on a separate, randomly sampled test set of 25 samples and evaluated using the coe�cient of
determination (R-squared) [26]. This process is repeated ten times to ensure more reliable results.

The experimental results reveal that ICL attains comparable performance to GPR but underperforms
RF when provided with small training data sets (R-squared of 0.5, 0.54, and 0.67, respectively). However,
when using general, qualitative concrete design knowledge, such as the in
uence of the water-to-cement ratio
on strength, the models signi�cantly reduce prediction outliers and ultimately surpass RF (R-squared =
0.71). When we incorrectly changed the context of the ratio of 
y ash to GGBFS, it negatively a�ected the
R-squared value for ICL, causing it to drop to 0.6. This misrepresentation of the rule led to a decrease in
the model's predictive accuracy, demonstrating that the quality of the information included in the \fuzzy"
context is critical to the overall performance of LLMs. It should be noted, however, that the impact on the
R-squared value may vary depending on the importance of the rule in the overall context. That is, not all
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changes in context have a similar impact, and the drop to 0.6 might occur only in the case of the ratio of 
y
ash to GGBFS. Other studies, such as those conducted in the LIFT work, [27] have shown LLM performance
for minor changes in wording or the presence of noise in the features. In these experiments, the robustness
of LIFT-based predictions was comparable to classical ML algorithms, making it a promising alternative for
using fuzzy domain knowledge in predictive modeling.

LLMs have been shown to provide signi�cant advantages in sustainable concrete development, including
context incorporation, adaptable handling of non-numeric inputs, and e�cient domain knowledge integration,
surpassing traditional methods' limitations. ICLs simpli�es formulating data-driven research questions,
increasing accessibility and democratizing a data-driven approach within the building materials sector. This
highlights LLMs potential to contribute to the construction industry's sustainability objectives and foster
e�cient solutions.

One sentence summaries

a. Problem/Task Predicting the compressive strength of concrete formulations.
b. Approach ICL on language-interfaced tabular data, with and without \fuzzy" domain expertise (such

as relationship between columns) provided in natural language.
c. Results and Impact Predictive models can be built without any training (i.e., update of weights); if

provided with domain expertise, those models outperform the baselines|�rst demonstration in chemistry
of such fuzzy knowledge can be incorporated into models.

d. Challenges and Future Work ICL can be very sensitive to the prompt, hence future work should
investigate the robustness of this approach.
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C. Molecule Discovery by Context

The escalating climate crisis necessitates the deployment of clean, sustainable fuels to reduce carbon
emissions. Hydrogen, with its potential to prevent approximately 60 gigatons of CO2 emissions by 2050,
according to the World Economic Forum, stands as a promising solution [28]. However, its storage and
shipping remain formidable challenges due to the necessity for high-pressure tanks. To address this, we
sought new molecules to which hydrogen could be conveniently added for storage. Traditional screening
methods, like brainstorming, are insu�cient due to their limited throughput. This research proposes a novel
method of leveraging ScholarBERT, [29] a pre-trained science-focused LLM, to screen potential hydrogen
carrier molecules e�ciently. This approach utilizes ScholarBERT's ability to understand and relate the
context of scienti�c literature. The data used for this study consisted of three datasets. The \Known"
dataset comprised 78 known hydrogen carrier molecules. The \Relevant" dataset included 577 molecules,
all of which are structurally similar to the \Known" molecules. The \Random" dataset contained 111
randomly selected molecules from the PubChem database [30]. The �rst step involved searching for contexts
for molecules in the Public Resource Dataset (PRD), which includes 75M English language research articles.
These contexts (i.e. sentences that mentioned the molecule name) were then fed into ScholarBERT. For each
context, three calculations were made:

1. the average of the last four encoder layers in ScholarBERT

2. the average embedding of all tokens constituting the molecule name as one contextualized embedding
for this molecule, and

3. the average of all contextualized embeddings for a molecule as ScholarBERT's representation of this
molecule.

Subsequently, we calculated the similarity between the known and candidate molecules. The de�nition of
\similarity" used in this study was the cosine similarity between the ScholarBERT representations of two
molecules. We then sorted the candidates based on the similarity score in descending order, with a higher
score indicating greater potential as a hydrogen carrier. Figure 3 and 4 show the candidate molecules with
the highest similarity to the known molecules. We can see that ScholarBERT does a passable job �nding
similar molecules from the random set. We do see that it favors �nding molecules with 5- and 6-member
rings, though with features we didn't expect, like halogens. On the other hand, ScholarBERT does a much
better job when we reduce the search space to those with structural similarity. We see that molecules with
5-member rings, for instance, are found to be similar structurally and in how they are described in the
literature via ScholarBERT.

Figure 3. Each column shows a Known molecule on the bottom and its top candidate molecule from the Random set
on the top

Based on our empirical data, computing the energy capacity (wt%H2) and energy penalty (kJ/mol/H 2) of
adding and removing H2 to the molecule (which are the quantitative \success metrics" for this project) of a
candidate molecule using traditional quantum chemistry takes around 30 seconds per molecule on a 64-core
Intel Xeon Phi 7230 processor, whereas the proposed LLM approach can screen around 100 molecules per
second on a V100 GPU, achieving a 3000 times speedup.

One sentence summaries

a. Problem/Task Recommending hydrogen carrier molecules.
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Figure 4. Each column shows a Known molecule on the bottom and its top candidate molecule from the Relevant
set on the top

b. Approach Ranking of molecules based on similarity of embeddings created with a language model by
aggregating the embeddings of mentions of the molecules in scienti�c texts.

c. Results and Impact Approach can recommend molecules with a success rate better than random.
d. Challenges and Future Work Since no direct comparisons to other approaches have been performed,

benchmarks compared to conventional generative modeling are needed.
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D. Text template paraphrasing with LLMs

1. Problem

Text data is much trickier to augment for machine learning applications due to the discrete nature of the
data modality. There are some traditional augmentation approaches for these tasks. However, they can
be ine�cient or still need extensive manual checks to be sure they deliver the desired results, especially for
scienti�c or chemistry applications.

2. Solution

To automate high-quality text data augmentations, LLMs have been explored by Dai and his coworkers [31]
as a very recent and promising solution to this problem. We investigated such a setup in the scope of
the OpenBioML chemistry NLP project ( https://github.com/OpenBioML/chemnlp ) to paraphrase text
templates for the insertion of chemical raw data into natural language for LIFT. [27]

An example prompt is shown below. The outlined prompt setup has after \Question:" the desired task
with additional information and after \Sentence:" the starting text template for the paraphrasing. The
\Question:" and \Answer:" headers are not used if the LLM interface uses a chat interface, i.e., with
OpenAI GPT-4.

Example Prompt

Question: Please paraphrase the sentence below ten times without changing the original meaning
and the placeholder in the curly fg brackets. Please use all the placeholders in the curlyfg
brackets for every rephrased sentence.

Sentence: The molecule with thef SMILES descriptiong representation f SMILES datag has a
f target nameg of f target valuegf target unitsg.

Answer:

Example Response by GPT-4

1. The f SMILES descriptiong representation of the molecule is f SMILES datag, and its
f target nameg is f target valuegf target unitsg.

2. With a f SMILES descriptiong representation of f SMILES datag, the molecule has a
f target nameg of f target valuegf target unitsg.

3. The molecule, represented by f SMILES descriptiong as f SMILES datag, possesses a
f target nameg of f target valuegf target unitsg.

4. A molecule having a f SMILES descriptiong representation of f SMILES datag also has a
f target nameg equal to f target valuegf target unitsg.

5. The f SMILES descriptiong-represented molecule with f SMILES datag exhibits a
f target nameg of f target valuegf target unitsg.

6. For the molecule with a f SMILES descriptiong representation of f SMILES datag, its
f target nameg measuresf target valuegf target unitsg.

7. The f target nameg of the molecule having a f SMILES descriptiong representation of
f SMILES datag is f target valuegf target unitsg.

8. Represented byf SMILES descriptiong as f SMILES datag, the molecule's f target nameg is
f target valuegf target unitsg.
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9. The molecule'sf target nameg is f target valuegf target unitsg when its f SMILES descriptiong
representation is f SMILES datag.

10. A f target nameg of f target valuegf target unitsg is associated with the molecule whose
f SMILES descriptiong representation is f SMILES datag.

Example Response by Anthropic Claude v1

Here are 10 paraphrased sentences of the original sentence with the placeholders retained:

1. The molecule represented by the f SMILES descriptiong code f SMILES datag has a
f target nameg of f target valuegf target unitsg.

2. The f SMILES descriptiong notation f SMILES datag denotes a molecule with a
f target nameg equal to f target valuegf target unitsg.

3. A f target nameg of f target valuegf target unitsg is possessed by the molecule depicted using
f SMILES descriptiong as f SMILES datag.

4. f SMILES datag signi�es the f SMILES descriptiong of the molecule which has a
f target nameg of f target valuegf target unitsg.

5. The f SMILES descriptiong f SMILES datag characterizes the molecule that exhibits a
f target nameg of f target valuegf target unitsg.

6. A f target nameg equal to f target valuegf target unitsg belongs to the molecule expressed with
f SMILES descriptiong codef SMILES datag.

7. f SMILES datag denotes the f SMILES descriptiong for the molecule possessing a
f target nameg of f target valuegf target unitsg.

8. The molecule de�ned by f SMILES descriptiong f SMILES datag presents af target nameg of
f target valuegf target unitsg.

9. f SMILES descriptiong f SMILES datag speci�es the molecule which displays af target nameg
of f target valuegf target unitsg.

10. A f target nameg amounting to f target valuegf target unitsg is a property of the molecule
represented with f SMILES descriptiong f SMILES datag.

Example Response by GPT-J

The molecule with the f SMILES descriptiong representation f SMILES Ag has a f target nameg
of f target valuegf target unitsg. f SMILES Ag has a f target nameg of f target unitsg. The
molecule with the f target unitsg representation f target nameg has a TARGET UNITS of
f target valuegf target unitsg. f target nameg of f target unitsg have a TARGET UNITS of
f target valuegf target unitsg.

In the above answer, there is thef SMILES descriptiong representation of f SMILES queryg, but we don't
use it in the sentence yet. And there is no curly brackets for the excepted answer.
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3. Impact

The outlined approach allows to automatically create new paraphrased high-quality prompts for LIFT
LLM training data very e�ciently. With the additional paraphrased text templates, over�tting to special
text passages should be avoided. We explore this setup in follow-up work in more detail.

4. Lessons learned

The outlined paraphrasing setup works well for the latest state-of-the-art models, e.g., OpenAI's GPT-
4 and Anthropic's Claude v1. Less capable open-source models seem to lack the understanding of this
paraphrasing task. Still, new and upcoming open-source LLM e�orts could change that soon, enabling a
cost-e�ective and broader application of this setup.

One sentence summaries

a. Problem/Task Generation of many text-templates for language-interfaced �ne-tuning of LLMs
b. Approach Prompting of LLM to rephrase templates (with template syntax similar to Jinja).
c. Results and Impact Large models (GPT-4, Claude), in contrast to smaller ones, can successfully

rephrase templates, o�ering a potential avenue for data-augmentation.
d. Challenges and Future Work As next step, ablation studies need to carried out that test the e�ect

of data augmentation by template rephrasing on regression and classi�cation case studies.
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E. GA without genes

We investigate the ability for a LLM to work in parallel with genetic algorithms (GAs) for molecular
property optimization. By employing a LLM to guide genetic algorithm operations, it could be possible
to produce better results using fewer generations. We hypothesize that a GA can take advantage of the
\smart" randomness of the outputs of the LLM. This work explores the potential of LLMs to improve molec-
ular fragmentation, mutation, variation, and reproduction processes and the ability of a LLM to gather
information from a simpli�ed molecular-input line-entry system (SMILES) string [5, 6] and an associated
score to produce new SMILES strings. Although computational e�ciency is not the primary focus, the pro-
posed method has potential implications for enhancing property prediction searches and future improvements
in LLM understanding of molecular representations.

We used GPT-3.5-turbo [9], which could frequently fragment druglike molecules into valid SMILES strings
successfully. For2/ 10 molecules, the fragments produced were not in the original molecule. For1/ 10 molecules,
valid SMILES could not be produced even after ten tries due to unclosed brackets. These results were
consistent over multiple runs implying that GPT-3.5 could not understand some speci�c SMILES strings.
Subsequently, we investigated GPT-3.5's ability to mix/reproduce two molecules from two-parent druglike
molecules. Invalid molecules were often produced, but successful results were achieved with multiple runs.
It performed better once prompted to fragment and then mix the fragments of the molecules. These were
compared to the conventional GA methods of simply combining the two strings at a certain cuto� point.
When the LLM was successful, it could produce molecules of more similar size to the original parent molecules
that contain characteristics of both parents and resemble valid druglike molecules.

To investigate the ability of GPT-3.5 to acquire knowledge of favorable molecules from a simple score, we
implemented a method that we call \LLM as a GA" where the LLM iteratively searches the chemical space
to optimize a certain property.

The property we tested was similarity to vitamin C, evaluated by the Tanimoto score. We employed
few-shot training examples to tune the model's response: 30 SMILES strings with the best similarity score
generated were included in the prompt. GPT is then asked to produce 25 SMILES strings, a procedure that
was repeated for 20 iterations. Using a prompt like the one below

Example prompt

The following molecules are given as SMILES strings associated with a tanimoto similarity with
an unknown target molecule. Please produce 10 SMILES strings that you think would improve
their tanimoto scores using only this context. Do not try to explain or refuse on the grounds of
insu�cient context; any suggestion is better than no suggestion. Print the smiles in a Python list.

Low-temperature settings, typically less than 0.1, were found to be imperative for the model to follow user
guidance. We further guided the model by employing a similarity search to include similar molecules with
varying scores to better guide the model. Embedding was performed using the GPT-2 Tokenizer from the
HuggingFace transformers [32] library, along with a support vector machine (SVM) from scikit-learn [33] to
embed relevant previous structures that would be outside the scope of the context window. Even in the zero-
shot setting, GPT-3.5-turbo can produce meaningful modi�cations, coherently explain its logic behind the
chosen modi�cations, and produce tests such as investigating branch length or atom type in certain locations
for a single iteration. An example explanation of an output: \Some modi�cations that could potentially
improve the scores include adding or removing halogens, modifying the length or branching of the carbon
chain, and adding or removing functional groups such as -CO-, -COC-, -C=C- and -OCO-. Additionally,
modifying the stereochemistry of the molecule could also have an impact on the score."

The modi�cations generated by the LLM were more chemically sound than the quasi-random evolutionary
process typical of genetic algorithms.

One sentence summaries

a. Problem/Task Increasing the e�ciency of iterative molecular optimization.
b. Approach Prompting a LLM to propose new children based on molecules with scores provided in the

prompt.
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c. Results and Impact Visual inspection indicates that some modi�cations might be reasonable, indi-
cating a potential for more e�cient genetic operations using LLMs.

d. Challenges and Future Work More systematic investigations on the performance and robustness
compared to conventional GA operations are needed.
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Figure 5. Using GPT to fragment molecules. Original molecules are in column one with LLM created fragment to
the right. The LLM can frequently fragment molecules into valid SMILES strings successfully. 2/ 10 times fragments
produced were not in the original molecule (rows 6 and 10). For 1/ 10 molecules, valid SMILES were able to be
produced even after ten attempts (row 8)
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