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S1 Analysis of surrogate model and observed low- vs. high-
fidelity Xe/Kr selectivity correlation at the iteration be-
fore the optimal COF is acquired
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Figure S1: Predictivity of high-fidelity Xe/Kr selectivity, on un-acquired COFs, by the
surrogate model the iteration before the optimal COF was acquired. (a) Parity plot
between true simulated and predicted high-fidelity Xe/Kr selectivity. Each COF is a point.
The red x marks the optimal COF acquired in the next iteration. The histograms show the
marginal distributions. (b) Posterior distribution of predicted high-fidelity Xe/Kr selectivity
of COFs not yet acquired. The COFs are sorted in descending order, by their true simulated
Xe/Kr selectivity. Red highlights the optimal COF acquired in the next iteration.
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Figure S2: Comparison of Xe/Kr selectivity predicted by low- and high-fidelity simu-
lations, on the COFs acquired the iteration before the optimal COF was acquired.
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S2 Search efficiency over multiple runs
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Figure S3: Search efficiency traces for SFBO, MFBO, and random search over different
sets of initializing COFs.
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S3 MFBO with permuted features
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Figure S4: MFBO with permuted features. We compare the search efficiency of 15 runs
of MFBO with preserved and (each-run-)permuted features.
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S4 Post-MFBO analysis of simulated adsorption data

S4.1 Correlation between low- and high-fidelity simulated Xe/Kr selec-
tivity

In Fig. S5 we show the parity plot between predicted xenon/krypton selectivity for the binary
grand-Canonical Monte Carlo (BGCMC) simulations and the Henry coefficient calculations—
the high- and low-fidelity simulations, respectively. We observe that the there is relatively high
agreement between the high- and low-fidelity simulations for materials with lower predicted selec-
tivity; however, for the top performing materials, we see that the selectivity determined by Henry
coefficients becomes less reliable and less correlated the BGCMC predictions.

Figure S5: Comparison of Xe/Kr selectivity predicted by low- and high-fidelity simula-
tions. Correlation between the Xe/Kr selectivity using high-fidelity (BGCMC) and low-fidelity
(Henry) calculations including error bars along both axes. Notice that the top performing
COFs, located in the upper right-hand quadrant, have a poor correlation between fidelities
with the low-fidelity over estimating material performance.

S4.2 Correlation between high-fidelity simulated Xe/Kr selectivity and
COF features

Fig. S6 displays the relationship between the high-fidelity Xe/Kr selectivity of the COFs and their
features. Regarding the pore size, we see that COFs that exhibit the highest selectivity have a
pore diameter close to the kinetic diameter of Kr and Xe. This is a known trend for metal-organic
frameworks (MOFs) [1].

Fig. S7 visualizes the raw feature vector of the 15 COFs with the largest high-fidelity Xe/Kr
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selectivity (green) and the 15 lowest (red). The poorest-performing COFs tend to have large void
fraction and pore diameter.
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Figure S6: The relationship between high-fidelity simulated Xe/Kr selectivity and (a)
geometry and (b) compositional features of the COFs. Each COF is represented by a
point. The dashed/dotted line in the top-left panel represents the kinetic diameters of Xe
and Kr being 4.1 Å and 3.6 Å respectively.
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Figure S7: Radar plot displaying COF feature vectors for top 15 and bottom 15 ranking
COFs in terms of high-fidelity Xe/Kr selectivity.

S9



S4.3 GP predictivity of high-fidelity Xe/Kr selectivity
Here, we examine the effectiveness of the hand-engineered features of the COFs in x for predicting
the high-fidelity Xe/Kr selectivity via a Gaussian process (GP)—including the case where we treat
the low-fidelity Xe/Kr selectivity as a feature (so the input is [x y (1/3)]). We randomly partition
the COFs into an 80%/20% train/test set. We fit a GP on the train set, then apply the GP to
make predictions on the test set of COFs ie. predict their high-fidelity Xe/Kr selectivity based on
their features. Fig. S8 shows a parity plot comparing the predictions of the GP on the test set
with the true, held-out high-fidelity Xe/Kr selectivity. Note, here we use all simulated data for all
608 COFs. The mean square error (MSE) of the GP is 0.99 when using the standard features x
and 80% of all data for training, and it decreases to 0.29 when the input is augmented with the
low-fidelity Xe/Kr selectivity. This dramatic improvement is explained by the strong correlation
between the low- and high-fidelity Xe/Kr selectivities (see Fig. S5).
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Figure S8: Parity plot showing GP predictivity of high-fidelity Xe/Kr selectivity on the
test set of COFs (20% of them), with 80% of all COFs for training, using as input (a) the 14
chemical and structural features in x (same as for MFBO) (b) the same features in (a) but
augmented with the low-fidelity Xe/Kr selectivity, so the input is [x y (1/3)].
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