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 1. ML Aided DNA Recognition: 

ML Details

Text S1: 

In combination with RDKit fingerprints generated from SMILES string, 8 key input features 

derived from the molecular, chemical, and electronic properties of the DNA nucleotides have 

been considered in the input training dataset. A total of six input features, including average 

atomic radius, average ionic radius, average covalent radius, average Pauling electronegativity, 

average number of valance electrons, and average polarizability were manually extracted 

utilizing composition-based feature vectors (“CBFVs”)1 and two features HOMO and LUMO 

were extracted from the gaussian optimized geometry of DNA nucleotides. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical technique for analyzing large datasets that 

have a high number of dimensions or features per observation.2,3 The primary goal of PCA is to 

reduce the dimensionality of the data while retaining the maximum amount of information and 

making the data more interpretable. Dimensionality reduction is achieved by transforming the 

original dataset into a new coordinate system, also known as principal components, where the 

majority of the variation in the data can be described using fewer dimensions than the original 

dataset. The transformation is linear and is performed by computing the eigenvectors and 

eigenvalues of the covariance matrix of the data.
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XGBoost Regression (XGBR)

In 2016, Tianqi Chen and his co-workers introduced a machine learning algorithm called 

XGBoost (eXtreme Gradient Boosting) in their paper titled "XGBoost: A Scalable Tree Boosting 

System".4 XGBoost is a type of ensemble learning algorithm that utilizes multiple tree learners to 

enhance prediction accuracy using the principle of gradient boosting. This approach involves 

combining a weak model with several other weak models (decision trees) to create a more 

powerful and accurate model.5 XGBoost has gained widespread popularity due to its efficiency, 

scalability, and ability to handle a variety of data types.

Random Forest Regression (RFR)

The random forest ML algorithm was first introduced by Leo Breiman and his colleagues in 

2001.6 The algorithm utilizes an ensemble learning approach that combines multiple decision 

trees, using a technique known as bootstrap and aggregation (bagging), to generate a powerful 

predictive model. Rather than relying on a single decision tree, the random forest algorithm 

aggregates the predictions of many decision trees to make a final prediction. The final output is 

calculated as the average of the individual predictions made by each decision tree. By using 

different subsets of data and features to train each decision tree, the random forest helps to 

reduce overfitting and improve the generalization performance of the model. 

Extra Tree Regression (ETR)

The extra tree ML algorithm was first introduced by Pierre Geurts et al. in 2006 in their paper 

titled "Extremely randomized trees."7 It is an ensemble learning method that combines multiple 

decision trees to make a more accurate and stable prediction. The basic idea behind ETR is to 
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create a large number of decision trees, each trained on a random subset of the training data and 

using a random subset of the available features at each split. The final prediction is then made by 

aggregating the predictions of all the individual trees.

Light Gradient Boosted Machine Regressor (LGBR):

The light gradient boosted machine regressor (LGBR) algorithm was first introduced by Guolin 

Ke et al. in 2017 in the article entitled "LightGBM: A Highly Efficient Gradient Boosting 

Decision Tree."8 The LGBR algorithm uses a gradient boosting framework that builds an 

ensemble of decision trees, where each tree is trained to correct the errors made by the previous 

trees. LGBMR is optimized for speed and efficiency, and it uses two novel optimization 

techniques: gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB) to 

improve its performance. The model can handle categorical variables, unlike other algorithms, 

which could be advantageous in avoiding overfitting.

Mean Absolute Error (MAE):

Mean Absolute Error (MAE) is a commonly used performance metric in ML to measure the 

average absolute difference between the predicted values and the actual values. It provides a 

straightforward measure of the model’s accuracy by quantifying the average magnitude of errors. 

MAE is defined as, 

MAE =   

1
𝑁

𝑛

∑
𝑖

|𝑌𝑖 ‒ 𝑦𝑖|

Here  and  denotes the DFT calculated, and predicted transmission function, respectively, 𝑌𝑖 𝑦𝑖

and N represents the total number of data points.
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Coefficient of Determination (R2):

The coefficient of determination (R2) is a statistical measure of how well a regression model 

performs in predicting the output variable on the test dataset. It quantifies the proportion of the 

variance in the actual output values that is captured by the predicted values from the model. The 

coefficient of determination normally ranges from 0 to 1, where 0 indicates that the model fails 

to capture any meaningful relationship between the input features and the target, and 1 indicates 

that the model perfectly predicts the output variable on the test data, capturing all the variance in 

the actual values. R2 is defined as,

𝑅2 =

𝑛

∑
𝑖

(𝑌𝑖 ‒ 𝑦𝑖)2     

𝑛

∑
𝑖

(𝑌𝑖 ‒ 𝑦̅𝑖)2  

Here  and  denotes the DFT determined and predicted transmission function, respectively; n 𝑌𝑖 𝑦𝑖

represents the total number of transmission data points, and  represents an average of  𝑦̅𝑖

transmission values. 

10-fold cross-validation:  

The cross-validation method is a statistical method of ML model validation. The method assesses 

how well a trained model will generalize to an independent dataset. In the 10-fold cross-

validation, the input dataset is randomly partitioned into 10 equal parts or ‘folds.’ The data of 9 

of these folds is used for the training of the model, and the data of the remaining fold is used for 

validation of the model. The process is repeated 10 times so that each group can be utilized as 
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validation data. The results of the 10 evaluations are then averaged to produce a single 

performance metric, which is used to assess the model’s performance.

Population Stability Index (PSI)

The population stability index (PSI) is a statistic that measures how much a variable has shifted 

over time and is used to monitor applicability of a statistical model to the current population. A 

PSI value below 0.1 implies a stable model with no significant change in the population 

distribution. A PSI value between 0.1 and 0.2 suggests moderate changes, requiring cautious 

consideration before retraining the model. When the PSI value exceeds 0.2, it indicates a 

significant change in the population distribution, highlighting an unstable model.

Learning Curve:

The learning curve is a visualization technique that demonstrates the impact of increasing 

training data on the model’s performance toward output prediction. Learning curves help in 

understanding the trade-off between bias and variance. Bias refers to the error introduced when a 

simplified model is used to approximate a complex problem. Variance, on the other hand, refers 

to the model's sensitivity to fluctuations in the training data. By observing the convergence of 

training and testing performance, one can check whether the model is stable or not. If the scores 

exhibit high variance or large fluctuations, it suggests an unstable model that is highly sensitive 

to changes in the training data.

Most-stable Configuration 

Text S2: 
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To determine the most-stable configuration of DNA nucleotides, we first relaxed the atomic 

structures of DNA nucleotides (dAMP, dGMP, dCMP, dTMP) by utilizing the B3LYP/6-31+G* 

level of theory, as available in the Gaussian09 code.9 Subsequently, we focused on obtaining the 

most stable geometry of DNA nucleotides adsorbed on the MoS2 nanochannel surface. To get the 

most stable configuration of MoS2 nanochannel+nucleotide systems, we have considered all 

possible rotations from 0° to 180° around the x-axis in the yz-plane for all four DNA nucleotides, 

as shown in Figure S1.

Scheme S1: Rotation of dAMP over the MoS2 nanochannel: We have considered all possible 

rotations from 0° to 180° (in the steps of 30°) around the x-axis in the yz-plane for each 

individual DNA nucleotide adsorbed on MoS2 nanochannel surface, as shown in Figure S1.
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Figure S1: Representative orientations of dAMP (both top and side views) over the MoS2 
nanochannel are illustrated, corresponding to in-plane rotations from 0° to 180° in the steps of 
30° around the x-axis in the yz-plane.

We have relaxed each individual nucleotide over the MoS2 nanochannel surface in each 

considered orientation. For geometry relaxation, we perform density functional theory (DFT) 

computations by using the SIESTA (Spanish Initiative for Electronic Simulations with 

Thousands of Atoms) code.10 GGA-PBE (generalized gradient approximation with Perdew-

Burke-Ernzerhof) approximation,11 400 Ry mesh cut-off, Troullier-Martins norm-conserved 
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pseudopotentials,12 and conjugate gradient (CG) algorithm are the parameters used in the DFT-

assisted geometry optimization. 

Table S1. Relative energies (in eV) of the MoS2 nanochannel+nucleotide systems when DNA 
nucleotides (dAMP, dGMP, dCMP, dTMP) are adsorbed on the nanochannel surface in seven 
different orientations (0°, 30°, 60°, 90°, 120°, 150°, 180°) as shown in Figure S1.

To this end, we have a total of seven different orientations for each DNA nucleotide. To 

determine the most stable configuration, we have computed the relative energy values, as given 

in Table S1. The most stable configuration of each MoS2 nanochannel+nucleotide system is 

given in Figure S2.

Nucleotides 00 300 600 900 1200 1500 1800

dAMP 0.04 0.00 0.01 0.01 0.03 0.02 0.04

dGMP 0.02 0.01 0.10 0.05 0.01 0.00 0.02

dCMP 0.03 0.03 0.02 0.01 0.03 0.00 0.01

dTMP 0.04 0.00 0.02 0.01 0.02 0.01 0.02
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Figure S2. The most stable configurations (top and side views) of MoS2 nanochannel+nucleotide 
systems. 

2. Details of Optimized Hyperparameters and Test Mean Absolute Error (MAE):

Table S2. Tuned hyperparameters with their corresponding test MAE values.

S. No. ML Regression 
Models

Optimized Hyperparameters Test 
MAE

1. XGBoost 
Regressor (XGBR)

verbose= 5, n_estimators=2500, min_child_weight=1, 
max_depth= 4,learning_rate= 0.15,cv=2,booster= 'gbtre’, 

base_score= 0.5

0.15

2. Random Forest 
Regressor (RFR)

bootstrap: True, ccp_alpha: 0.0, criterion: squared_error, 
max_depth: None, max_leaf_nodes: None, 

max_samples: None, min_samples_split: 2, n_estimators: 
100, n_jobs: None, random_state: 100, verbose: 0

0.25

3. Extra Tree 
Regressor (ETR)

bootstrap: True, ccp_alpha: 0.0, criterion: squared_error, 
max_depth: None, max_leaf_nodes: None, 

max_samples: None, min_samples_split: 2, n_estimators: 
100, n_jobs: None, random_state: 1, verbose: 0

0.38

4. Light Gradient 
Boosted Machine 

Regressor (LGBR)

subsample= 1, reg_lambda= 10, reg_alpha= 0, num_leav
es=10, n_estimators=577,min_child_samples= 20,max_d

epth= 10,learning_rate= 0.5, colsample_bytree= 0.5)

0.47

3. Stability Check of Best-Fitted XGBR Model:
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Figure S3. (a) Scatter plot of ML predicted vs. DFT calculated transmission function for train 
and test datasets with the best-fitted XGBR model, (b) learning curve for the best-fitted XGBR 
model. The considered training data size range is 0.50-0.90 (in the step of 0.05). For each 
considered train-test split, 10-fold cross-validation is performed, and the given MAE values are 
the mean of MAE of each fold cross-validation, and (c) population stability index (PSI) analysis 
with both fixed size bins and quantile bins for the best-fitted XGBR model. Here  and  are the �̅� �̅�
mean PSI scores for fixed-size bins and quantile bins, respectively. 

4. RDKit fingerprints eliminated XGBR prediction:
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Figure S4. Scatter plot of ML predicted vs. DFT calculated transmission function for train and 
test datasets with XGBR model trained with RDKit fingerprints eliminated input dataset. The 
tight cluster of points aligned with the diagonal line signifies that the model consistently 
performs well on both the training and test datasets, indicating a good generalization capability.

5. Pearson’s Correlation Matrix:
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Figure S5. Pearson’s correlation matrix illustrating the correlation among the RDKit fingerprints 
eliminated input features. The plot shows a high positive correlation among the features avg. 
covalent radius and avg. ionic radius as well as HOMO and LUMO.

6. RDKit fingerprints eliminated Feature Importance Plot:
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Figure S6. Feature importance plot of RDKit fingerprints eliminated input features for the best-
fitted model XGBR toward prediction of transmission function. The plot shows the highest 
feature importance of the energy feature, which is obvious because it is the energy at which the 
transmission function is calculated.

7. Ensuring Stability of XGBR Models:
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Figure S7. (a) Learning curves for the models XGBR 1, XGBR 2, XGBR 3, and XGBR 4 used 
in the prediction of completely unknown nucleotides dAMP, dGMP, dCMP, and dTMP, 
respectively. The considered training data size range is 0.50-0.90 (in the step of 0.05). For each 
considered train-test split, 10-fold cross-validation is performed, and the given MAE values are 
the mean of MAE of each fold of 10-fold cross-validation and (b) The population stability index 
(PSI) analysis for the models XGBR 1, XGBR 2, XGBR 3, XGBR 4. Here  and  are the �̅� �̅�
mean PSI of the models for fixed-size bins and quantile bins, respectively. 

8. ML Aided DNA Classification: 
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Table S3. Features description used in the ML aided classification of DNA nucleotides.

Feature Description

T Transmission in the energy range of -2.5 to -1.7 eV

MAX Maxima normalized transmission (T/Tmax); Tmax is the maximum value of transmission

MIN Minima normalized transmission (T/Tmin); Tmin is the minimum value of transmission

AVG Average normalized transmission (T/Tavg); Tavg is the average value of transmission

Classification Details

Text S3:

Logistic Regression (LR)

Logistic regression is a supervised machine learning algorithm mainly used for classification. It 

is a kind of statistical algorithm which analyze the relationship between a set of independent 

variables and the dependent variables.13 In binary classification, the model uses a sigmoid 

function (also known as a logistic function) to map real-valued inputs to probabilities between 0 

and 1. In multiclass classification, a softmax function is used to map inputs to probabilities 

across multiple classes. This allows the algorithm to effectively categorize data based on the 

given set of independent variables.

Random Forest Classification (RFC)

Random forest classification is an ensemble learning algorithm that combines multiple decision 

trees to make predictions.6 The algorithm works by constructing a multitude of decision trees 

during the training phase. Each tree is trained on a different subset of the training data, randomly 
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sampled with replacement (known as bootstrapping). Additionally, at each node of the tree, only 

a random subset of features is considered for splitting. During prediction, each tree in the random 

forest independently generates a prediction, and the final prediction is determined through a 

majority voting process. The class label that receives the most votes across all trees is chosen as 

the predicted class.

Decision Tree Classification (DTC) 

Decision tree classification is a supervised learning classification algorithm that constructs a tree-

like structure resembling a flowchart, where each internal node represents a test on a specific 

attribute, each branch represents a possible outcome of the test, and each leaf node holds a class 

label or a predicted value.14 The decision tree is built iteratively by recursively partitioning the 

training data into subsets based on attribute values. This partitioning process continues until a 

termination criterion, such as reaching a maximum tree depth or a minimum number of samples, 

is met. During training, the decision tree algorithm determines the best attribute to split the data 

based on a metric like entropy or Gini impurity. These metrics measure the impurity or disorder 

in the subsets, and the algorithm aims to find the attribute that maximizes the information gain or 

minimizes the impurity after the split.

K-Nearest Neighbors Classification (KNC)

K-nearest neighbors classification (KNC) is a simple supervised machine learning classification 

algorithm operating on the principle of similarity, leveraging the proximity of instances in the 

feature space.15 By identifying the K closest neighbors to a test instance from the training 

dataset, KNC determines its class or value through a majority voting process. This allows KNC 

to make reliable predictions based on the collective behavior of its nearest neighbors.
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Confusion Matrix

A confusion matrix is a table that summarizes the performance of a classification model (binary 

or multiclass), which aims to predict a categorical label for each input instance. It displays the 

counts of true positives, true negatives, false positives, and false negatives. For binary 

classification, the matrix will be of a 2 2 table, where the rows represent the actual classes or ×

labels, and the columns represent the predicted classes. For multiclass classification, the matrix 

shape will be equal to the number of classes, i.e., for n classes, it will be n n. By examining the ×

values in the confusion matrix, various performance metrics (accuracy, precision, recall, and F1 

score) can be calculated.  

Accuracy Score

Accuracy is a metric that measures the overall correctness or accuracy of a classification model. 

It calculates the proportion of correctly predicted instances out of the total number of instances. 

Accuracy ranges from 0 to 1, with 1 indicating perfect accuracy, meaning that all predictions are 

correct.

The formula for accuracy is as follows:

 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

In this formula, True Positives represent the number of instances correctly predicted as positive, 

True Negatives represent the number of instances correctly predicted as negative, False Positives 

represent the number of instances incorrectly predicted as positive, and False Negatives represent 

the number of instances incorrectly predicted as negative.

Precision
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Precision is a metric that measures the proportion of correctly predicted positive instances out of 

all instances predicted as positive. It quantifies the model's ability to avoid false positives. The 

formula for precision is as follows:

Precision= 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall

A recall is a metric that measures the proportion of correctly predicted positive instances out of 

all actual positive instances. The formula for the recall is as follows:

= 𝑅𝑒𝑐𝑎𝑙𝑙 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

F1-score

The F1 score is a metric used to evaluate the performance of a ML classification model. The F1 

score is calculated using the following formula:

 = 𝐹1 𝑠𝑐𝑜𝑟𝑒
2 ×

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙

It takes into account both precision and recall, providing a harmonic mean of the two values. A 

higher F1 score indicates better model performance, with a maximum value of 1 representing 

perfect precision and recall.

Permutation Feature Importance
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Permutation feature importance is a technique used in machine learning to measure the 

importance of each feature in a predictive model.16 It works by systematically permuting the 

values of a single feature and observing the resulting impact on the model's performance. By 

quantifying the impact of each feature on the model's performance, permutation feature 

importance offers insights into the global interpretation of relative importance of different 

features. This information helps in understanding the underlying relationships between features 

and the target variable.

SHAP Summary Bar Plot

The SHAP (SHapley Additive exPlanations) summary bar plot provides the visual understanding 

of contribution of each feature towards every prediction of the ML model.17 This plot is 

particularly useful for understanding the relative importance of features and gaining insights into 

the model's decision-making process.

9. Details of Optimized Hyperparameters and Test Accuracy for Classification Algorithms:
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Table S4. Tuned hyperparameters for selected ML classification algorithms with their 
corresponding test accuracy values.

S. No. Classification 
Models

Optimized Hyperparameters Test 
Accuracy

1. Logistic Regression 
(LR)

C=0.01, penalty= 'none', solver= 'newton-cg' 100%

2. Random Forest 
Classification 

(RFC)

'bootstrap': True, 'criterion': ‘entropy,' 
'max_depth’: 32, 'max_features': 'sqrt,' 

'min_samples_leaf': 1, 'min_samples_split': 2, 
'n_estimators': 100, 'random_state’: 95,

90%

3. Decision Tree 
Classification 

(DTC)

'criterion’: ‘gini,' 'max_depth’: 45, 'max_features': 
'sqrt,' 'min_samples_leaf': 1, 'min_samples_split': 

2, ‘splitter’: best, 'random_state’: 35,

86%

4. K-Nearest 
Neighbors 

Classification 
(KNC)

'metric': 'manhattan,' 'n_neighbors': 1, ''weights': 
'distance'

80%

10. Classification Reports:
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Figure S8. Classification reports of the models LR, RFC, DTC, and KNC in the quaternary 
classification of DNA nucleotides. The model LR is found to be the best-fitted with perfect 
precision, recall, and F1-score equal to 1.

11. Stability Check of Best-fitted LR Classification Algorithm:
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Figure S9. Confusion matrixes for LR algorithm with different train-test split ratios. 

12. Single Nucleotide Identification for Rotation Dynamics:
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Figure S10. LR-assisted single nucleotide identification for each considered rotation of DNA 
nucleotide from a dataset of four types of nucleotides. (a) Confusion matrixes for each rotation, 
(b) permutation feature importance plots, and (c) SHAP summary bar plots. Here, Max, Min, T, 
and Avg stand for maxima normalized transmission (T/Tmax), minima normalized transmission 
(T/Tmin), transmission, and average normalized transmission (T/Tavg), respectively.

13. Transmission and Current-Voltage Plots with Underlying Physics: 
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The electric current I  is calculated using the equation, (𝑉𝑏)

                                                                  
 𝐼(𝑉𝑏) =

2𝑒
ℎ ∫𝑇(𝐸,𝑉𝑏)(𝑓𝐿(𝐸 ‒ µ𝐿) ‒ 𝑓𝑅(𝐸 ‒ µ𝑅))𝑑𝐸

Where e is the electron charge, h is the Planck’s constant,  is transmission function, and 𝑇(𝐸,𝑉𝑏)

 and are the Fermi functions for the electrons in the left (L) and right (R) 𝑓𝐿(𝐸 ‒ µ𝐿) 𝑓𝑅(𝐸 ‒ µ𝑅) 

leads, respectively.18   

Figure S11. (a) Transmission functions plot of all four DNA nucleotides at the energy window 
of ± 2.5 eV, and the inset picture shows the zoomed transmission function, (b) I-V curve for 
pristine MoS2 nanochannel and MoS2 nanochannel+nucleotide systems. The Fermi energy (E-
EF) level is shifted to zero.

Text S4: 

The transmission sensitivity is calculated by using the equation, 

Transmission sensitivity (S%) =             |(𝐺0 ‒ 𝐺) 𝐺0| × 100%

where  and  is the conductance of the pristine MoS2 nanochannel and MoS2 nanochannel 𝐺0 𝐺

+nucleotide systems, respectively. 

The current-sensitivity values are calculated by using the equation, 
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Current-Sensitivity (S%) =             |(𝐼0 ‒ 𝐼) 𝐼0| × 100%

where  and  is the current of the pristine MoS2 nanochannel and MoS2 𝐼0 𝐼

nanochannel+nucleotide systems, respectively.

Underlying Physics: 

To better understand the underlying physics involved in the interaction between the proposed 

MoS2 nanochannel device and DNA nucleotides, we further study the molecular orbitals (MOs). 

To investigate how different nucleotides are interacting, we study the MOs of the device in the 

presence and absence of DNA molecules (Figure S12). We found that different nucleotides 

affect the distribution of MOs differently, which in turn results in unique transmission 

fingerprints.

Figure S12. Isosurface plots (isosurface value is 0.05 e/Å3) of the molecular orbitals (MOs) 
responsible for the sharp transmission peaks of MoS2 nanochannel device with and without DNA 
nucleotides systems at an energy value of 0.635 eV. The negative and positive lobes are shown 
in blue and red colors, respectively. 

14. Adsorption Energy ( ) and translocation Time ( ): 𝐸𝑎 𝜏
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To calculate the adsorption energy (Ea),  the below-given equation is used,19

                                    
𝐸𝑎 = [𝐸(𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐷𝑁𝐴 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒) ‒ (𝐸𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐸𝐷𝑁𝐴 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒)]

Here,  denotes the total optimized energy of the (MoS2 
𝐸(𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐷𝑁𝐴 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒)

nanochannel+DNA nucleotide) system;  and are the single-point 
𝐸𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝐸𝐷𝑁𝐴 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 

energy values of isolated MoS2 nanochannel and isolated DNA nucleotide in the optimized 

structure of the (MoS2 nanochannel+DNA nucleotide) setup, respectively.

Table S5. Adsorption energy values ( in eV) and translocation time ( ) for MoS2 𝐸𝑎 𝜏 ∝  𝑒

‒ 𝐸𝑖
𝑘𝐵𝑇

nanochannel device with DNA nucleotides placed inside.

Nucleotide Adsorption Energy  (eV) 𝐸𝑎

Translocation time (τ )∝  𝑒

‒ 𝐸𝑖
𝑘𝐵𝑇

dAMP 0.73 5.66 × 10 ‒ 13

dGMP 1.01 1.35 × 10 ‒ 17

dCMP 0.99 2.38 × 10 ‒ 17

dTMP 0.66 6.06 × 10 ‒ 12
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15. Charge Density Difference (CDD) Plot: 

The charge density difference [ ] plots have been evaluated by using the following ∆𝜌(𝑟)

equation, 

                                                                                                  
∆𝜌(𝑟) = [𝜌(𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒)(𝑟) ‒ (𝜌𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑟) +  𝜌𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒(𝑟))]

Here,  is the total charge density of the (phosphorene 
𝜌(𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒)(𝑟)

nanoslit+amino acid) system, and  and  is the charge density 
𝜌𝑀𝑜𝑆2 𝑛𝑎𝑛𝑜𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (𝑟) 𝜌𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 (𝑟)

on the isolated MoS2 nanochannel device and isolated DNA nucleotide molecule, respectively, in 

the optimized geometry of the MoS2 nanochannel +nucleotide systems. 

Figure S13. Charge density difference (CDD) plots for the most stable configuration of MoS2 
nanochannel+nucleotide systems with isosurface value 0.005 e/Å3. The cyan and magenta colors 
represent the charge accumulation and charge depletion, respectively.
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16. Effect of In-Plane Rotation on Transmission Function:

Figure S14. Variation in the transmission spectra due to in-plane rotation (from 0° to 180°) of 
DNA nucleotides adsorbed on the MoS2 nanochannel surface along the x-axis in the yz-plane.
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