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Figure S-1: Photo of the resistance measurement setup. The materials library is secured on the x-y-
stage (1) (UHL GT8-NSNA) by a suction plate (2). The plate also accommodates a heating and nitrogen 
cooling system allowing temperature dependent measurements. However, this system was not used 
for the findings of this work. The stages are controlled by UHL F9S-3-M positioning controller (3). The 
resistance measurements are conducted using a Keithley 2400 source meter (4). The contact pins (5) 
(Feinmetall F238) are mounted to the stage by a custom spring-loaded circuit board (6). The setup is 
controlled via an Intel Core i7 8 GB RAM Windows 10 PC (7). 
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Figure S-2: Visualization of each of the ten test libraries containing a photo of the library, compositional 
data, and the measured electrical resistance.
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Figure S-3: Test of different initialization area arrangements. One co- (b) and one multilayer sputtered 

materials library (c) were examined. For nine initialization areas, a total of  
𝑛 = (349

9 ) ≈ 1.58 ∙ 1017

combinations are possible, that is why a random selection of arrangements is not feasible. The red one 
is used for all other tests of the algorithm, as it generally performed reliably across all libraries. 
Generally, the choice of initialization areas matters most for libraries showing a resistance distribution 
of high variance. Since the multilayer sputtered libraries cover more area on their respective 
composition space, the choice is in this case more important. The blue and purple areas show that for 
a narrow selection of initialization areas, the algorithm is converging late or not at all. The 
arrangements shown in green and orange show that the edges of the libraries are most important to 
achieve a sufficient initial fit. The edges often feature the areas with the highest uncertainty of the 
Gaussian process, therefore the performance improves when adding these areas early on. In the 
arrangement shown in green, the area in the center of the library is neglected. The performance of (b) 
with this arrangement shows that the center point is generally not needed for the prediction of 
uniform co-sputtered libraries. However, the center region is important in case of the multilayer 
sputtered libraries. Since they were designed to cover the complete ternary composition space with 
the composition space visible in form of a triangle in the center of the library, the center region is of 
great importance. In order to improve the prediction for these libraries, 5 initialization areas were 
placed in the center region, resulting in the arrangement shown in red. 
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Figure S-4: Comparison of the GP performance on the dataset shown in Figure S-2 with and without 
including the measurement variance.  
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Figure S-5: Dataset with simulated outliers. As a single failed touchdown of the pins should be 
simulated, ten out of 30 resistance measurements were exchanged by outliers chosen randomly 
between . The position of the outliers was fixed to ensure comparability. Each plot shows 0.8 ‒ 1.2 𝑀Ω
the mean resistance at each measurement area. 
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Figure S-6: Visualization of the resistance distributions with randomly added measurement noise. As 
soon as the vanilla GP encounters an outlier, the prediction fails, while with incorporating the 
measurement noise into the model, the GP is able to skip the outliers. 
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Figure S-7: Performance of the autonomous measurement with different Gaussian process kernels. 
Two kernels of the Matérn kernel class, the squared exponential as well as the rational quadratic kernel 
are compared. 

11



Figure S-8: Visualization of the developed stopping criterion for all tested materials libraries. The 
accuracy of the optimization process, the mean covariance and well as the gradient of the mean 
covariance is shown over the iterations until all MAs are measured. The stopping iteration is marked 
in green, while the purple dashed lined shows the stopping iteration determined by observing the 
accuracy as well as a visual representation of the prediction (the optimal stopping opportunity). The 
purple range show the percentage of measured values compared to the entire library. The different 
colors of the mean covariance plot signal the different phases of the stopping criterion.
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