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1 Training details

1.1 Mathematical formulation
PIGNet2 predicts the binding affinity Epred, utilizing both the protein graph, Gp = (Vp, Ep) and the ligand
graph, Gl = (V l, E l). Here, we only considered heavy atoms as nodes of the graph for both proteins and
ligands. For the initial node features, refer to Table 1. We adopted two types of adjacency matrices:
intramolecular and intermolecular. The former is used to learn internal information about either the ligand
or protein, considering edges only between nodes connected by a covalent bond. The latter, on the other
hand, is designed to update the ligand and protein node features with additional information about their
counterparts. For this, we consider an edge to exist only when the distance between a ligand (protein) node
and protein (ligand) node is greater than 0.5 Å and less than 5 Å.

PIGNet2 shares the same model architecture as PIGNet.[1] The initial node features of protein and ligand
are embedded in a node feature, h, using the same feedforward network. Following this, the node features
incorporate both intramolecular and intermolecular information through two networks: the gated graph
attention network and the interaction network. All ligand and protein node features are then concatenated
pairwise to predict the binding affinity of a given complex.
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Feature List of available elements

Atom type C, N, O, F, P, S, Cl, Br, X
Degree of atom 0, 1, 2, 3, 4, 5
Hybridization s, sp, sp2, sp3, sp3d, sp3d2, unspecified
Period 1, 2, 3, 4, 5, 6
Group 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
Aromaticity 0, 1

Supplementary Table 1: The list of initial atom features.

1.2 Loss functions
During the training process of PIGNet2, we consider the structures from two major data augmentation
strategies: near-native structures, which include crystal structures from positive data augmentation (PDA)
and non-binding structures from negative data augmentation (NDA). To design a versatile deep learning-
based PLI prediction, it is essential to explicitly predict the binding affinity of near-native structures and
non-binding structures. In order to accurately predict the binding affinity of the near-native structures,
we utilized the regression loss (Lregression), which is the mean squared error loss between the experimental
binding affinity, Etrue, and the predicted binding affinity, Epred, as shown in Equation 1.

Lregression =
1

N

∑
i

(Epred
i − Etrue

i )2, (1)

Meanwhile, similar to the previous PIGNet, for non-binding structures, we employed a hinge function
denoted as Laugmentation, as shown in Equation 2, to better distinguish them from the near-native structures.

Laugmentation =
1

N

∑
i

max(Etarget
i − Epred

i , ϵcriterion) (2)

The values of Etarget and ϵcriterion can vary depending on the type of data augmentation. As a result,
Laugmentation encourages training to predict Epred to be greater than Etarget+ϵcriterion. Specifically, Laugmentation

divides into three components depending on the type of data augmentation: Lre-docking, Lcross-docking, and
Lrandom-docking. Lre-docking is a loss function for structures generated by re-docking data augmentation. To
predict the binding affinity to be a little more unstable than the experimental binding affinity corresponding
to the native structure, we set Etarget to be Etrue and ϵcriterion to be -1. Both Lcross-docking and Lrandom-docking
are considered non-binding structures. We set Etarget to -6.8 kcal/mol, so that the predicted binding affinity
is greater than -6.8 kcal/mol, which reflects a generally accepted criterion for ineffective binding, equivalent
to the condition that pIC50 exceeds 10 µM . Correspondingly, ϵcriterion has been set to 0.

In summary, the total loss function is a linear combination of the aforementioned loss functions and can
be expressed as follows:

Ltotal = Lregression

+ Cre-dockingLre-docking

+ Crandom-dockingLrandom-docking

+ Ccross-dockingLcross-docking,

(3)

where Cre-docking, Ccross-docking, and Crandom-docking are constant hyperparameters, each set as 10.0, 5.0, and
5.0, respectively.
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