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1 Dataset Analysis

Table S1: The number and percentage of POCs labeled by shape-persistence in the original
dataset

Shape-persistence Number of POCs Percentage
Collapsed 23775 66.4%

Non-collapsed 12027 33.6%
Total 35802 100%

Table S2: The number of porous organic cages in the supervised and unsupervised datasets
and the training and test set splits.

Dataset Total Training Test
Original dataset (Supervised) 35802 32221 3581

Augmented dataset (Unsupervised) 1192690 1190304 2386

Figure S1: The cavity size (Å) distributions of non-collapsed POCs.
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(a) BB1 SMILES

(b) BB2 SMILES

Figure S2: Length distribution of (a) BB1s and (b) BB2s in SMILES representation.

S-4



(a) BB1 skeleton SMILES

(b) BB2 skeleton SMILES

Figure S3: Length distribution (a) BB1 skeletons and (b) BB2 skeletons in SMILES repre-
sentation.
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Table S3: The number of POCs assembled by different reactions in the supervised and
unsupervised dataset.

Dataset Nomenclature Reactions Number of POCs

Original dataset
(35802)

aldehyde2amine3 imine condensation 5967
alkene2alkene3 alkene metathesis 5967

amine2aldehyde3 imine condensation 5967
amine2carboxylic acid3 amide condensation 5967
carboxylic acid2amine3 amide condensation 5967

alkyne2alkyne3 alkyne metathesis 5967

Augmented dataset
(1192690)

aldehyde2amine3 imine condensation 199345
alkene2alkene3 alkene metathesis 199119

amine2aldehyde3 imine condensation 198930
amine2carboxylic acid3 amide condensation 198912
carboxylic acid2amine3 amide condensation 198558

alkyne2alkyne3 alkyne metathesis 197826

Table S4: The number of categories of BB1 and BB2 skeletons and the minimum and
maximum length of skeletons represented by SMILES string in the original dataset.

Skeletons Number of categories Min length Max length
BB1 51 21 105
BB2 117 10 56

2 Data Augmentation Strategy

A two-step combinatorial method was developed to achieve BB2 augmentation. In the

original dataset, BB2s exhibit high symmetry at a molecular level. This feature enables a

convenient decomposition of a BB2 skeleton (with reactive end functional groups stripped

from the BB2 backbone) to a precursor core and two subsequent linkers on both sides that

are axially symmetrical with respect to the core. In the first step of data augmentation, the

randomly chosen moieties of the core and linkers (a pair of identical linkers) were coupled to

form a new precursor skeleton. The boundary between a core and a linker in the precursor

skeleton is not strictly defined but is taken only for the convenience of deconstruction. In

some cases, the moiety of core or linker is not present, which gives more flexibility in exploring

augmentation possibilities. Therefore, precursor skeletons can be constructed by one of the

following modes: li + cr + li, cr itself and li + li. Subsequently, the entire BB2 can either
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be mode (1).R + li + cr + li + R, (2).R + cr + R or (3).R + li + li + R (where li, cr, R

denote the linker, core and reactive end functional group, respectively). The examples of

BB2 constructed by three strategies are shown in Fig. S4. In total, the most common

79 cores (excluding an empty element for the core-absent case) and 35 linkers (excluding

an empty element for the linker-absent case) are selected as candidates to implement the

random combination (shown in Fig. S5 and Fig. S6).

Besides the random combination, random functionalisation was performed as the second-

step data augmentation method to further increase the number of available BB2s for virtual

cage assembly. The random functionalisation was applied only to the linker moieties in BB2

skeletons to preserve the symmetry of the resulting POCs. Only one of the 20 functional

groups was introduced in each functionalisation for a linker. The random functionalisation

was designed to traverse all pairs of linkers in Fig. S7. Subsequently, the cores and generated

linkers were combined to boost the number of BB2 skeletons using the same first-step random

combination procedure described above. As a result of the two-step data augmentation, the

number of POCs was raised to around 1.2 million and POCs were curated into a dataset

(referred to as the “augmented dataset”). The size comparison of the original and augmented

datasets can be found in Table S1 and Table S4.
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Figure S4: Schematic plot of the two-step data augmentation approach. a) Random combi-
nations of sub-precursors as the first step. Three modes of BB2 construction are illustrated.
From left to right: 1) R + li + cr + li + R, 2) R + cr + R and 3) R + li + li + R. Where li,
cr, R denote the linker, core and reactive end group, respectively. The region of skeletons
is specifically marked. Circles in the reactive end functional groups denote the connecting
point. b). Random functionalization on the linker moieties in BB2 skeletons is the second
step. The symmetry of BB2 skeletons is preserved after the augmentation.
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Figure S5: 79 core moieties for BB2 random combination (excluding an empty element in
the core-absent case). The orange circles denote the connections between cores and linkers
for mode (1).R + li + cr + li + R or between cores and reactive end functional groups for
mode (2).R + cr + R.

S-9



Figure S6: 35 Linker moieties for BB2 random combination (excluding an empty element in
the linker-absent case). The orange circles denote the connections between cores and linkers
for mode (1) R + li + cr + li + R or between two linkers for mode (3) R + li + li + R. The
green circles denote the connection between linkers and reactive end functional groups for
mode (1) R + li + cr + li + R and (3) R + li + li + R or between cores and reactive end
functional groups for mode (2) R + cr + R.
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Figure S7: 20 Functional groups for BB2 random functionalization.

3 Model

3.1 Variational Autoencoder

A variational autoencoder introduced by Kingma and WellingS1 is a generative model en-

abling the mapping of data X to a latent continuous variable z. The objective of this

continuous latent variable model is to find a model distribution q(z) based on characteristics

of latent variable z to approximate the true posterior p(z|X). The encoder and decoder,

usually modelled by deep neural networks, learn the approximate posterior qϕ(z|X) and the

likelihood distribution pθ(X|z). The parameters ϕ and θ of the respective neural networks

are learnt by maximising the evidence lower bound (ELBO):

logpθ(X) ≥ Eqϕ(z|X)[logpθ(X|z)] − DKL(qϕ(z|X)||p(z))

= LRecon + LKL = LELBO

(1)

The LKL term represents the Kullback-Leibler divergence between the prior distribution

p(z) and the learnt posterior qϕ(z|X). In practice, the prior is normally assumed as a

multivariate Gaussian distribution.

As LKL can be alternatively understood as a regularization term,S2,S3 a hyperparameter

β is introduced to balance the extent of regularization during training,
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LELBO = LRecon + βLKL (2)

β=1 is the original VAE proposed by Kingma and Welling.S1 β=0 results in the degen-

eration of the VAE to a standard autoencoder (AE) for data reconstruction only and fail

to explicitly encourage the formation of broad and even distributions over the latent space.

By adjusting β to a reasonable value in (0,1), the reconstruction quality of POCs can be

improved while maintaining the generalisability of the VAE to unseen data.S4,S5

The VAE aims to generate the multi-component cage representation formed by BB1s,

BB2s and reactions written as X = {xbb2, xbb1, xrxt} Where xbb2 = {x1, x2, x3, ..., xt} is a

one-dimensional sequential molecular representation of predefined maximum length n and

the rest of components are categories. Three components of the cage representation are

assumed conditionally independent given a common latent variable z. A valid POC data

requires the presence of all three components. Each component was encoded by learnt deep

neural networks ϕ = {ϕ1, ϕ2, ϕ3} and decoded by θ = {θ1, θ2, θ3}. Therefore, the Lrecon

term can be split into two components LGRU and LGRU for the reconstruction of {xbb2} and

{xbb1, xrxt}.

The distribution of POCs over latent variable z can be organised by the property of

POCs by adding a predictor qϕ(y|z)S6 to enforce the property-oriented constraint.

Lprop = E(y,z)∈Ssupervised
[−logqϕ(y|z)] (3)

Where the predictor takes data from the supervised dataset. z in the supervised domain

z ∈ Ssupervised can be obtained by mapping supervised data X ∈ Ssupervised into latent space

via the encoder qϕ(z|X).

Therefore, the multi-component loss function with adjusted magnitudes in terms can be

written as:
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Ltotal = LGRU + LMLP + βLKL + γLprop

= Lrecon + βLKL + γLprop

= LV AE + γLprop

(4)

3.2 Auto-Regressive Model

For the generation of sequences xbb2 = {x1, x2, x3, ..., xt}, an auto-regressive encoder-decoder

pair both based on gated recurrent units (GRU) is used,S7 with the difference that the

encoder employs the bi-directional architecture while the decoder is one-directional only. By

incorporating an auto-regressive decoding process in VAE architecture, the generation of a

token at time step t is based on both the local context, i.e., all tokens generated in previous

time steps x<t, and global features, i.e., the latent variable z:S3

pθ(xbb2|z) =
t∏

t=1
pθ(xt|x<t, z) (5)

For the generation of the rest of the cage representation, Multi-layer perceptrons are

applied to the encoder-decoder pairs processing the category-represented components of the

POC {xbb1, xrxt} whose decoding process is solely dependent on the latent variable z.

In comparison, multi-layer perceptrons are applied to process the category-represented

components of the POC {xbb1, xrxt} whose decoding process is solely dependent on the

latent variable z.

3.3 SMILES vocabulary
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Table S5: Vocabulary of SMILES strings. The two-character tokens “Br” and “Cl” are
replaced by single-character tokens “R” and “G”. The special integrated token “[Lr]” is
converted to “X”. The functional tokens “[nop]”, “[sos]” and “[eos]” are replaced by single
character tokens “$”, “¥” and “£”.

SMILES vocabulary
$ ¥ £ # (
) - / 1 2
3 4 5 = B
C F G H N
O R S X [
] c n o s

4 Model Training Performance

Table S6: The evaluations of test set performances at the last epoch of the training process.

Evaluation matrix Value
Reconstruction Loss 0.012

Category Reconstruction Loss 0.001
KL Loss 64.63

Prop Loss 0.364
Prop Accuracy 0.841
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Figure S8: The logarithmic loss curves of all loss components on the fixed test set.

Figure S9: The magnitude of all schedulers during the training process. a). constant sched-
uler for sequence reconstruction loss term LGRU . b) and c). linear scheduler for category
reconstruction LMLP and property loss term Lprop and d). cyclic scheduler for KL divergence
term LKL.
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5 Evaluations

5.1 Evaluation Matrix

The random sampling of the latent vectors of POCs follows a standard normal distribution.

The batch size is 1000 for the random sampling. The evaluation of the validity of generated

POCs can be simplified to evaluate the validity of generated SMILES of BB2 skeletons. The

validity of the SMILES was evaluated by RDKit.S8 The equation of validity is shown in

Equation 6 where N denotes the number of molecules:

V alidity = NV alid

NBatch

(6)

The novelty of molecules is compared with either the original dataset or the union set of

the original and augmented datasets. The novelty should consider all three components of

the POC. Novelty + Validity was evaluated by the following equation:

Novelty + V alidity = NNovel

NV alid

∗ V alidity (7)

In the calculation of uniqueness, molecules that appear only once and only the first

occurrence of molecules that appear multiple times will be counted as unique molecules.

Uniqueness + Validity can be calculated using a similar equation compared with Novelty +

Validity:

Uniqueness + V alidity = NUnique

NV alid

∗ V alidity (8)

The POC is considered to have precursor validity with generated BB2 skeletons having

precursor validity. The precursor validity evaluates the number of reaction sites denoted in

generated BB2 skeletons. The calculation of Precursor Validity + Validity is:

Precursor V alidity + V alidity = NP recursor V alid

NV alid

∗ V alidity (9)
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Symmetry refers to the graph symmetry in our study. Similarly, the evaluation of the

symmetry of POCs was simplified to evaluate the symmetry of generated BB2 skeletons. We

used Open BabelS9 to evaluate the graph symmetry of BB2 skeletons based on their canonical

SMILES representations. In the C2 symmetrical BB2 skeletons, the symmetry class of two

reaction sites should be identical. Therefore, BB2 skeletons that have reaction sites with the

same symmetry class are considered to pass the symmetry evaluation. In addition, symmetry

should be considered for BB2 skeletons that pass the SMILES validity and precursor validity.

Therefore, the Symmetry + Precursor Validity + Validity is calculated as:

Symmetry + Precursor V alidity + V alidity

= NSymmetry

NP recursor V alid

∗ (Precursor V alidity + V alidity)
(10)
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5.2 SELFIES Model performance

We have also tested the model performance using SELFIES as the input. The maximum

length of the SELFIES string was 50. Similar to the vocabulary of SMILES, the vocabulary

of SELFIES tokens is constructed including four special tokens indicating the start of the

sequence, the end of the sequence, the padding and the notation of the site of the reactive

end functional group. The model was adapted to accept the SELFIES string input while

preserving other conditions, including the dataset, dataset split ratio, overall model archi-

tectures, layer dimensions, training schedulers, the optimizer and all hyperparameters that

do not affect the SELFIES adaption.

Table S7: Evaluations of generated molecules using the SELFIES and SMILES representation
upon random sampling.

Evaluation metrics Qualified Rate Qualified Rate
(SELFIES) (SMILES)

Validity 1.000 0.930
Novelty(original) + Validity 0.996 0.924

Novelty(original + Augmented) + Validity 0.974 0.906
Uniqueness + Validity 1.000 0.930

Precursor Validity + Validity 0.945 0.917
Symmetry + Precursor Validity + Validity 0.562 0.654

S-18



5.3 Analysis on the Generated POC Distribution

To identify how the generated POCs compare with the training datasets, we plotted the

generated molecules in Section 3.1 in the latent space depicted by Fig. 5(a). As shown

in Fig. S10, for each principal component dimension, we used Kernel Density Estimation

(KDE) to assess the distribution of the data points. Here, the generated POCs have a

similar distribution to the training set in both reduced dimensions, yet the distribution of

generated POCs has a lower variance. This indicates that the generated POCs reflect the

information in the training set, which includes both original and augmented POCs. We

also compared the distribution of generated POCs to the original and the combined set

(Original + Augmented), respectively. To quantify the difference between the generated

samples and the POCs in the training set, we computed the KL divergence between datasets

latent representation of the generated POC samples and the latent representation of the

original and combined datasets. By comparison (shown in Table S8), the approximated KL

divergence between the generated POCs and combined dataset is significantly smaller than

the original dataset. Therefore, the generated POCs resemble the combined dataset than

the original dataset.

Table S8: Estimated KL divergence between distribution of the latent representation of the
generated POCs and distributions of the original or Combined set, independently.

Original dataset Combined dataset
Generated POC samples 62.29 9.97

To further illustrate the similarity between the generated samples and the training

dataset, we used the combined Original + Augmented dataset to construct a PCA model and

subsequently transformed 1000 randomly sampled generated POCs into the reduced PCA

space, Figure S10(a). For clearer visualisation, we plotted 30000 training molecules from the

combined set of Original + Augmented dataset and all 1000 generated POCs. The generated

POCs scatter in the entire PCA space and separate clusters are not formed, Figure S10(b).

This indicates that, i) the distribution of generated POCs is very similar to the training set,
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(a) (b)

Figure S10: Kernel density estimate of the latent representation of generated samples and
samples of the training data for a). principle component 1 and b) principle component 2 of
the PCA.

and ii) Cage-VAE can capture the pattern of POCs in the training set and therefore generate

valid POC instances.
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(a) (b)

Figure S11: PCA of the latent space of the Cage-VAE, The PCA visualisation is coloured by
a). Different data sources from generated and training b). Probability of shape-persistence
mapped by the predictor. The colour bar shows the probability of the prediction on shape
persistence where 0 and 1 are the lowest and highest probability of collapse, respectively.
For clearer visualisation, only 30000 training molecules from the combined set of Original +
Augmented dataset and all 1000 generated POCs were plotted.
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5.4 Reconstruction

Figure S12: Histogram of 1000 reconstructions of a single POC in the latent space. The
top five most frequent occurrences are displayed. The number above each bar indicates the
distance from the point of the original input POC to the mean latent vectors of corresponding
POCs in the latent space.
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5.5 Interpolation

Linear interpolation (lerp) between latent vector q1 and q2 with interpolation factor µ can

be described straightforwardly:

linear(q1, q2; µ) = (1 − µ)q1 + µq2 (11)

Spherical linear interpolation (slerp) creates a circular arc with the claimed advantage of

preventing the traversal of unlikely regions outside the learnt manifold.S10 The formula was

introduced as:S11

slerp(q1, q2; µ) = sin(1 − µ)θ
sinθ

q1 + sinµθ

sinθ
q2 (12)

5.6 Filter

The filter is a flexible module that can be cascaded behind any generation method and uses

a simple evaluation matrix to validate generated molecules with minimal computational

cost. The filter has a layered structure that evaluates the quality of generated POCs in

the order of validity, novelty, precursor validity and symmetry, as described in Section 5.1.

Only the generated POC candidate that passes all layers of evaluations is considered valid

output, otherwise, the generated candidate will be discarded and subsequently the generation

method will be relaunched. The schematic diagram for the filter module is shown in Fig.

S13.

Figure S13: The schematic diagram of the filter module.
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