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1. Development of the BDE-db2 dataset

A total of 244,850 Density Functional Theory (DFT) calculations were performed for both the 

(closed-shell) parent molecules and homolytically-dissociated (open-shell) radicals. All structures 

were fully optimized at the (U)M06-2X/def2-TZVP1, 2 level of theory with Gaussian 16.3 Starting 

from the SMILES representation (H-capped for open-shell species) we identify the lowest energy 

conformer from RDKit4, 5 and use this geometry as the starting point for DFT optimization and to 

obtain the energetics and thermochemistry of open- and closed-shell species (Fig. S1A)). The 

forcefield utilized is MMFF94s, the number of embedded conformers is dependent on the number 

of rotatable bonds (n) where the mid of 100, 3n, 1000 is used with the following setting for 

EmbedMultipleConfs (pruneRmsThresh=0.2, randomSeed=1, useExpTorsionAnglePrefs=True, 

useBasicKnowledge=True).  Following this workflow, 219,834 calculations terminated normally 

while 25,016 encountered some form of automatically detected error – most frequently the 

presence of an imaginary frequency or a failure to determine a suitable initial 3D conformer from 

the SMILES embedding. Before additional data quality checks, these newly added calculations 

describe 38,277 new small molecules and 199,209 unique BDE values. Augmenting our original 

efforts6, 7 with these values results in a total of 509,740 DFT computed molecular enthalpies and 

531,244 unique homolytic BDE values. 

A linear model was used to detect outliers in computed absolute enthalpy values by regressing 

against the element counts (including explicit Hs) as independent variables. The linear model uses 

DFT calculated absolute enthalpy values (in Hartree) as target values. The Inner Quartile Range 

(IQR) was tabulated for the residuals, and calculations that were more than three times the IQR 

from the upper quartile were removed. This technique finds molecules with exceptionally high 

enthalpies for their given molecular composition, typically implying convergence to a particularly 

unstable conformation. Of the 509,740 enthalpy calculations, 4,309 were removed as enthalpy 

outliers with this method. The scatter plot for detection of outliers with abnormally large 

contributions from ZPE is shown in  (Fig. S1B). The resulting BDE-db2, dataset is shared openly 

and hosted on GitHub at https://github.com/patonlab/BDE-db2. The dataset is available in the 

folder titled Dataset/bde-db2. 

S2

https://github.com/patonlab/BDE-db2


All additional data for studies involving test set 2 and test set 3 can be found in the following 

GitHub location https://github.com/patonlab/BDE-db2/Datasets
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Figure S1. (A) Workflow for the construction of an updated bond dissociation enthalpy database containing 
halogenated species. (B) Plot of dissociation energy (BDSCFE) vs enthalpy (BDE) exposes errors due to large and 
unphysical changes in ZPE for a given dissociation, for which the reaction data is removed.
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2. Breakdown of types of bond dissociation in the BDE-db2 dataset

 

Figure S2. Frequency counts of all dissociation bond-types greater than 25 present in BDE-db2.
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3. Prediction accuracy of newly added bond types in held-out test set

Figure S3. Prediction accuracy relative to DFT oracle for each bond type in held-out set set with Model 1.
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4. Model 1: Performance on an external test set of halogenated heterocycles
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Figure S4. (A) Parity plots for BDE and BDFE prediction (kcal/mol) for aryl halides with Model 1. (B) Spread of 
errors for aryl halides according to bond type with Model 1.
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5. Dataset composition: BDE-db2 vs. halogenated heterocycle test set
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Figure S5. (A) Comparison of the atomic composition of the model training set and aryl halide external test set. (B) 
The presence of multiple halogens in a molecule is associated with larger prediction errors (black dots represent 
molecules with more than one halogen).
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6. Model 2: Performance on BDE-bd2 and an external test set of halogenated heterocycles
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Figure S6. Parity plots for prediction of BDE and BDFE (kcal/mol) with Model 2 for (A) held-out test set and (B) 
external test set of halogenated heterocycles.
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7. Composition of the polyhaloalkyl test set

 
Figure S7. Molecules in the polyhaloalkyl test set.  
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8. Model 2: Performance on polyhaloalkyl test set
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Figure S8. Parity plots for prediction of BDE and BDFE (kcal/mol) for polyhaloalkyl test set with Model 2.
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9. Polyhaloalkyl molecules added to training data

Figure S9. Molecular structures added to train Model 3. N.B. The graph representation used does not distinguish 
between (R)- and (S)-stereogenic centers, and so configuration at these centers is not shown.
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10.  Model 3: Performance on BDE-db2, halogenated heterocycle, and polyhaloalkyl test 
sets.
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Figure S10. BDE and BDFE predictions (kcal/mol) obtained with an improved model, Model 3: (A) held-out test set, 
(B) halogenated heterocycles and (C) polyhaloalkyl test set.
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11. Additional Details on comparison of traditional cheminformatics features and QM 
features.

For the models developed with Random Forest the following input and parameters were utilized. 

The inputs of fingerprints were created using Morgan Fingerprints with a radius of 3 and 512 bits 

defined around the bond of interest by specifying the atoms involved in the bond. The 

hyperparameters for modelling with random forest (RandomForestRegressor) was scanned using 

RandomizedSearchCV. The hyperparameter search include n_estimators = [100,200,300,400], 

max_features = [1,3,5,7, 'auto'], max_depth = [15, 10, 100, 1000]. Each model on the learning 

curve is optimized to get the respective hyperparameters for 10 different runs. The best parameters 

is chosen across the 10 runs to test on the held out test set 1. For graph neural network models with 

added QM description of bond lengths, the bond lengths were curated for each bond from the 

respective DFT calculation. The RBFExpansion  bond length (dimension of 128) is concatenated 

with the tokenized embedding of the bond state built from RDKit features. This updated bond state 

is utilized in the message passing operation in the graph neural networks. The newly developed 

model with the QM features was test on the held-out test set 1.
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