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Generation and Curation of CannaLit Dataset 
 
The raw dataset was taken from the DELIC Labs electronic extraction database and various client-
provided datasets. The masses for the acidic cannabinoids CBDA, THCA, and CBGA were 
normalized to their equivalent neutral molecule mass to account for decarboxylation of the 
carboxylic acid group that occurs when cannabis is subjected to heat: 
 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐶𝐵𝐷𝐴	𝑚𝑎𝑠𝑠 = 𝐶𝐵𝐷𝐴	𝑚𝑎𝑠𝑠	 × 0.8772 
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑇𝐻𝐶𝐴	𝑚𝑎𝑠𝑠 = 𝑇𝐻𝐶𝐴	𝑚𝑎𝑠𝑠	 × 0.8772 
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐶𝐵𝐺𝐴	𝑚𝑎𝑠𝑠 = 𝐶𝐵𝐺𝐴	𝑚𝑎𝑠𝑠	 × 0.8779 

 
Then, each cannabinoid’s yield was calculated as the mass of cannabinoid molecule obtained 
divided by the total input cannabinoid mass (i.e., sum of all cannabinoids within the input 
biomass): 
 

𝑐𝑎𝑛𝑛𝑎𝑏𝑖𝑛𝑜𝑖𝑑	𝑦𝑖𝑒𝑙𝑑 = 	
𝑐𝑎𝑛𝑛𝑎𝑏𝑖𝑛𝑜𝑖𝑑	𝑚𝑎𝑠𝑠	(𝑔)

𝑡𝑜𝑡𝑎𝑙	𝑖𝑛𝑝𝑢𝑡	𝑐𝑎𝑛𝑛𝑎𝑏𝑖𝑛𝑜𝑖𝑑	𝑚𝑎𝑠𝑠	(𝑔) 	× 100% 

 
Where an input cannabinoid concentration of THCA, THC, CBDA, CBD, or CBN was not 
reported, we reported the input value as zero (e.g., input_cbn was featurized as zero). Input 
cannabinoid concentrations were converted to mass fractions by simply dividing their wt% values 
by 100. For client-provided datasets, input_cann_total was manually curated by summing the 
cannabinoid masses (normalized to neutral forms if necessary). The cannabinoid molecule and 
extractor model were one hot encoded. The corresponding extractor models are SCFN triple 24L 
(extractor_model1), Extrakt 140 (extractor_model2), and SCFN dual 12L (extractor_model3). 
 
The density feature was calculated using the extraction temperature and pressure with the tool 
provided at https://www.peacesoftware.de/einigewerte/co2_e.html 
 
In cases where flow rate information was missing for some extractor_model2 entries, we 
calculated the flow rates based on a 60 Hz pump speed achieving 600 mL/min flow rate (36 kg/h). 
Since flow rate is directly proportional to pump speed, this meant a 50 Hz pump speed generated 
a flow of 30 kg/h.  
 
Entries that showed production of greater amounts of cannabinoid on output than input (i.e., more 
than theoretically possible even if considering both neutral and acid cannabinoid forms) were 
removed from the dataset. In some cases, negative recoveries were observed for CBN when 
utilizing recoveries calculated from spent and unspent biomass rather the cannabis extracts. These 
entries were removed as well. 
 
Input_xxx (e.g., input_cbd, input_thc) are the weight fraction of each respective input cannabinoid 
(e.g. an input_cannabinoid value of 0.0645 is 6.45 %w/w), without any normalization done for 
acidic cannabinoids (considering CO2 lost), while the input_mass feature is the mass of the entire 
biomass used for extraction. 
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Calculation of Possible Process Conditions 
 
To generate all the possible forms a variable could take, the difference of the minimum and 
maximum values of each continuous process variable (extraction time, temperature, pressure, and 
flow rate) within the CannLit dataset, subject to certain step sizes, was calculated (shown in Table 
1 below). Minimum values were rounded to the nearest smaller integer while maximum values 
were rounded to the nearest larger integer. Multiplying each column’s step size by one another (i.e. 
158.5 × 258 × 20.5 × 52) yields 4.4 × 107 possible process conditions to be tried. 
 
Table 1. Calculation of Accessible Process Space. 

 Extraction Time Pressure Temperature Flow Rate 

Minimum 
value 

42 94 44 9 

Maximum 
value 

360 353 85 115 

Difference 
(rounded) 

317 258 41 104 

Steps 158.5 258 20.5 52 
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Cultivar Legend 
 
Cultivars were given standard names in the main text for clarity. Table 2 shows the original names 
for each cultivar. 
 
Table 2. Cultivar legend. 
 
Cultivar 1 Emblem cultivar CBD 
Cultivar 2 Emblem cultivar NN 
Cultivar 3 Emblem cultivar BW 
Cultivar 4 Emblem cultivar N2 
Cultivar 5 Emblem cultivar SB 
Cultivar 6 Emblem cultivar NL 
Cultivar 7 Emblem cultivar TI 
Cultivar 8 CBD cultivar from Africa 
Cultivar 9 Zenabis 24k Gold 
Cultivar 10 Indica blend 
Cultivar 11 Emblem cultivar HB 
Cultivar 12 Emblem cultivar SK 
Cultivar 13 Indica Princess 
Cultivar 14 Lifter 
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ML Model Development 
 
Unsupervised machine learning 
 
Uniform manifold approximation and projection (UMAP)1 was chosen to reduce the extraction 
conditions to 2-dimensions suitable for plotting. All plots shown have a min_dist = 0.5 to ensure 
separation of data entries and n_neighbours = 50 such that global structure is emphasized while 
still retaining local neighbourhoods. 
 
Supervised machine learning 
 
We tested multiple linear and non-linear machine learning models to predict extraction yields from 
the corresponding conditions. The following workflow was carried out using the Scikit-learn 
package in python.2 All scripts can be found in the accompanying repository.  
 
All models used the same 80:20 train:test split generated pseudorandomly using the built-in 
train_test_split function and a random state of 25. Parameters were first normalized using the 
StandardScaler function according to the formula: 
 

𝑃GHIJ =
𝑃 − 𝑢L
𝜎L

 

where the scaler is trained only on the training data. Hyperparameters were tuned using a random 
search method (150 models created) where the best performing model was chosen based on the 
10-fold cross-validation R2. The final models were evaluated using R2, 10-fold cross-validation 
repeated 10 times, leave-one-out cross-validation, and test set statistics. Random forest, XGBoost, 
and k-nearest neighbour models provided remarkable training set statistics with R2 values nearing 
unity. Ultimately, we chose the random forest regressor for future modelling as the predictive 
performance of the test set most closely matched that of the training set as compared to the 
XGBoost and k-nearest neighbour regressors. 
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Figure S1. Random forest, XGBoost, support vector, and k-NN regressors tested for predicting 
extraction yields. MAE = mean average error, CV = cross-validation, LOO = leave-one-out cross 
validation.  
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Various linear models with different regularizations were also tested with none achieving adequate 
results. 
 

Figure S2. Linear models tested for predicting extraction yields. MAE = mean average error, CV 
= cross-validation, LOO = leave-one-out cross validation.  
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Model Validations 
 
Given the remarkable prediction statistics observed with various non-linear regression models, we 
first questioned how much training data was necessary to accurately predict the test set. The same 
20% of data was removed and held out for evaluation and the training set varied by randomly 
sampling a proportion of the original training set. The learning curve for the random forest model 
with ideal hyperparameters is shown in Figure S3 and demonstrates that only 20% of the original 
training set data (16% of all available data) is needed to predict both the training set and test set 
with adequate performance. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure S3. Random forest learning curves with either mean-average-error (left) or R2 (right) 
scoring. 
 
 
In addition to standard model evaluation (e.g., R2, MAE, test set performance) we performed 
experiments to support the chemical validity of our descriptors. The first test was determining if 
the extraction features for each run were chemically relevant or if the machine learning models 
were simply capturing trends in the data with respect to the extraction component. Here, the 16 
features describing the extraction conditions were replaced with a random number for each 
extraction and used alongside the categorical features describing the extraction component.3 We 
find that model performance sharply drops thus supporting the chemical validity of the extraction 
conditions in predicting extraction yield. Specifically, the test set and cross-validation statistics are 
especially poor with these random features, though there is some ability to predict the training 
data. 
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Figure S4. Random forest model built on the CannaLit database where all features other than 
cannabinoid identity are replaced with random numbers. 
 
Replacing all 24 features with random numbers, thus creating a fully random barcode for each 
extraction, also showed poor model performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. Random forest model built on the CannaLit database where all features including 
cannabinoid identity are replaced with random numbers. 
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Feature Importance 
 
We performed supplemental analysis to determine which features are most important for the 
random forest regressor to confirm appropriate model logic. We obtained the Gini importance 
values4 using the built in feature_importances_ attribute and found that the input cannabinoid mass 
has the greatest importance in determining the separation yield, a testament to the ability of tree-
based models to uncover non-linear trends as uniparameter plots show little correlation between 
these features and the extraction yield. Unsurprisingly, the identity of cannabinoid extracted is also 
deemed highly important as these features separate identical extraction runs - this observation does 
confirm that the model is following appropriate logic. Looking at the last notable parameter, 
flowRate, we see a clear cutoff between low and high flow rates where increasing flow rates 
appears to severely hinder the extraction yield. 

 
Figure S6. Feature importance for the random forest model. 
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Figure S7. Uniparameter plots relating individual features to yield. 
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Out-of-Cultivar Study 
 
We performed leave-one-cultivar-out analysis to test the robustness of the model. 13 of 14 strains 
were predicted with a mean average error below 20%, and 8 out of 14 strains predicted with a 
mean average error below 10%.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8. Mean average error obtained when holding out individual cultivars and predicting 
from the rest of the data.  
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Figure S9. Individual plots from leave-one-cultivar-out analysis 
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Single Cannabinoid Comparisons 
 
CannaLit was collected with the intent of maximizing data from difficult extraction processes. A 
consequence of this approach is that extraction conditions from one cannabinoid influence 
predictions of other cannabinoids. To ensure that model generalizability is retained or improved 
by including all cannabinoids, we compared CannaLit to a THC-constrained CannaLit for the 
prediction tasks included in the main text. 
 

 Figure S10. Comparison of the random forest model with full CannaLit (left, R2 = 0.99, Test R2 
= 0.96, 10-fold CV = 0.97, LOO = 0.98) and a model from a THC only dataset (right, R2 = 0.99, 
Test R2 = 0.88, 10-fold CV = 0.95, LOO = 0.96).  
 
The model built only on THC recovery exhibits similar training set statistics to the full CannaLit 
model with test set statistics slightly worse (Figure S10). An out-of-cultivar test was then 
performed to compare model generalizability across unseen cultivars (Figure S11). We find that 
the model built on full CannaLit outperforms the THC model with no cultivars having a MAE over 
50% while the THC model has 3 such cultivars. 
 
 

Figure S11. Mean average error when predicting cultivars left out of training for the full 
CannaLit model (left) and THC-only model (right). 
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Similar discrepancies were found when comparing the performance of predicting high-scale 
reactions or a held-out set cultivar 13 (originally used to compare to a single DoE designed 
dataset).  

 
Figure S12. Comparing the ability of a model trained on full CannaLit (left, test R2 = 0.98, test 
MAE = 3.88) and THC-only (right, test R2 = 0.68, test MAE = 13.63) extractions with an input 
biomass <400g to predict extractions with an input biomass >400g. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S13. Prediction of cultivar 13 from a full CannaLit model (left, test MAE = 11.8) vs a 
THC-only model (right, test MAE = 68.1) 
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Molecular Fingerprint Comparisons 
 
As noted in the main text, different cannabinoids can have different extraction yields based only 
on its inherent chemical properties and not the extraction conditions (e.g., CBD is more soluble in 
CO2 than THC). We tested if a predictive model could be obtained from only the chemical 
structures. Morgan fingerprints5 with 2048 bits and radius = 2 were obtained for each cannabinoid 
using RDKit6 and a random forest model trained using only the fingerprints of the respective 
cannabinoids (Figure S14).  
 

Figure S14. Random forest model predicting extraction yields for cannabinoids from the chemical 
fingerprints. R2 = 0.36, MAE = 21.0, test R2 = 0.38, test MAE = 21.7. 
 
We find that this model is unable to find strong correlations and conclude that inclusion of 
extraction conditions is necessary for predicting yields.  
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