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1 Assessment of the effect of the basis set in MODA

The quality of the MODA representation significantly depends on both the chosen theoretical level

used to compute the density matrix and the selected basis set for expanding the Hilbert space.

Consistent with prior research, MODA employs the Superposition of Atomic Densities (SAD) guess,

offering a balanced compromise between computational efficiency and the reliability of electronic

structure representation. To address the basis set effect, we benchmarked MODA’s performance

using five different sets, selecting them based on a progressive increase in their complexity and

accuracy. We start with STO-6G (i.e., a minimal basis set) that, while less accurate, keeps

computational demands in check. The 6-31G set provides a more precise representation, thanks

to a split-valence approach that offers a nuanced description of valence electrons. The basis sets
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6-31G* and 6-31+G* further refine accuracy by integrating polarization and diffuse functions,

capturing shifts in electron cloud shape when atoms bond, and thereby enhancing computational

precision. The final set, aug-cc-pVDZ, is part of the correlation-consistent basis set family, designed

for systematic convergence to the complete basis set limit. Collectively, these basis sets provide

various accuracy-to-computational cost trade-off options.
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Figure 1: Evolution of the intermolecular components of MODA with (a) 6-31+G* and (b) STO-
6G basis sets. (c) Time-resolved evolution of JAB along 10 ps of AIMD simulation. Sample’s
similarity matrices for (d) 6-31+G* and (e) STO-6G basis sets. The highlighted region in pink of
a-c corresponds to the framed region in d) and e).

Following the same approach employed throughout this work, we evaluated the performance of

the basis set choice through both qualitative and quantitative analyses. Regarding the qualitative

aspect, Fig. 1 illustrates the intermolecular components of MODA, computed via 6-31+G* and

STO-6G basis sets, along with the time-resolved evolution of JAB for a specific TTTA dimer.

Upon inspection of the time-dependent MODA evolution (Fig. 1a-b), the highest sensitivity of

the 6-31+G* basis set becomes apparent. This sensitivity is exhibited as a proportional shift in

MODA components in response to minor variations in JAB, and vice versa. In stark contrast, the

STO-6G basis set displays significantly lower responsiveness. For instance, the evolution of the

region highlighted in Fig. 1 covers a relatively narrow span of JAB values. The 6-31+G* results
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Basis Train Test Validation
STO-6G 30.26 47.78 53.64
6-31G 8.12 20.14 25.43
6-31G* 8.81 20.08 25.46

6-31+G* 1.96 13.35 17.57
aug-cc-pvdz 1.77 13.58 17.42

Table 1: MAE (in cm-1) associated to the prediction of JAB values for the TTTA dataset. The
MAE value of each column is provided at the optimal cross-validated set of hyperparameters using
25% of samples for training.

reveal these small variations, whereas the MODA components computed with STO-6G remain

constant throughout the entire range, which makes a ML model unable to distinguish between

these structures. The similarity maps of MODA using both basis sets (Fig. 1d-e) support these

conclusions.

As for the quantitative analysis, we trained a KRR model using MODA data informed by different

basis sets. The Mean Absolute Error (MAE) for the train, test, and validation sets is calculated.

Our results indicate a progressive reduction of the MAE when transitioning from the STO-6G to

the aug-cc-pvdz basis sets (see Table 1), which reinforces the importance of the basis set in MODA

as a quantum-informed representation. It is to be noted that MAEs for 6-31+G* and aug-cc-pvdz

compare well. However, since the computational cost of MODA using 6-31+G* is lower, this basis

set is selected for further discussions in the main text.

2 Decoupling formalism of BoB and SOAP descriptors

In this section we present the formalism to decouple intra- and intermolecular components of BoB

and SOAP representations. Additionally, we describe a scheme to automatically detect molecules

in multi-moiety systems.

2.1 Decoupling of BoB

The Bag of Bonds (BoB) is a variant of the Coulomb Matrix descriptor, where instead of a

matrix representation, atomic pairs are sorted into "bags" based on atomic types, with each bag

containing the sorted Coulombic interactions of those atomic pairs. Let us consider a molecule
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with N atoms, where each atom i is described by a nuclear charge Zi and a position vector Ri in

the three-dimensional space. The elements Mij of the Coulomb matrix are defined1 by

Mij =


0.5Z2.4

i if i = j,

ZiZj

|Ri−Rj|
if i ̸= j

(1)

where Zi and Zj are the nuclear charges, and Ri and Rj are the positions of atoms i and j. Next,

in the BoB representation, we partition the off-diagonal elements of the Coulomb matrix into

different "bags" corresponding to distinct pairs of atomic species. For example, all elements Mij

with i corresponding to a carbon atom and j to a hydrogen atom are placed into the "C-H" bag.

Then, for each bag, we sort the interaction values in descending order. The final BoB representation

is the concatenation of these sorted bags. It should be noted that in order to handle molecules of

different sizes, zero padding is often used to ensure a consistent size of the feature vector across

all molecules. The BoB method maintains a direct link to chemical intuition, as its elements can

be associated with pairwise interactions between atoms. Importantly, this representation captures

the invariance to atom indexing (like the Coulomb matrix) but also the total number of distinct

atom pairs.

In the Bag of Bonds (BoB) representation, a decoupling of intra- and intermolecular compo-

nents can be accomplished by partitioning each "bag" into two distinct sections. For a given bag

corresponding to a specific atomic pair type, say X-Y, the associated intra- and intermolecular

components can be differentiated by examining the individual atomic pairs contributing to that

bag. Specifically, if both atoms X and Y belong to the same molecule, their interaction is an

intramolecular component. On the other hand, if X and Y are found in different molecules, their

interaction represents an intermolecular component. By applying this differentiation to all atomic

pairs in a given bag, one can effectively divide the bag into two parts: one part containing all

intramolecular components and the other part containing all intermolecular components. This

process is repeated for all bags, creating a doubled set of bags, each bag pair representing the

intra- and intermolecular components of a particular atomic pair type. The final representation,

thus, consists of the sorted arrays of these intra- and intermolecular components for all types of
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atomic pairs present in the system, providing a more detailed account of the atomic interactions

in the system.

2.2 Decoupling of SOAP

SOAP, as implemented in many packages, is a 3-body descriptor, and thus, the intra/inter decou-

pling strategy presented for MODA and BoB (based on allocation of 2-body terms with respect

of the interaction type) cannot be directly applied. For this reason, we have adopted for SOAP a

decoupling strategy highly inspired in the work of Cersonsky et al..2 Here, we first illustrate the

approach for the structure-average version of SOAP and later provide some specifications for the

application of this approach in a local version of SOAP.

Consider xa and xb as distinct intramolecular sub-systems of the dimer, X. The respective

structure-average SOAP representations for these sub-systems, denoted as ρxa and ρxb
, encode

intramolecular information. The SOAP representation of the dimer, ρX , on the other hand, en-

compasses both intra- and intermolecular information, which cannot be directly segregated in

intra- and intermolecular components. We can directly compute the intramolecular components

of the dimer, ρIX , as the sum of the sub-systems xa and xb components:

ρIX = ρxa + ρxb
(2)

an then, the intermolecular components (denoted by ρiX) can be obtained as:

ρiX = ρX − ρIX (3)

where intramolecular components are subtracted from the total dimer representation, still retaining

the 3-body encoding of SOAP.

When considering a local SOAP representation, one major issue related to the dimensionality of

X and xi representations emerges. The dimer’s SOAP representation, ρX , can be represented by

a matrix of shape (Na+b ×M), where Na+b represents the total atom count in the sub-systems xa
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and xb, and M is a function of selected hyperparameters, among other factors. Conversely, the

respective sub-systems’ shapes are Na ×M and Nb ×M for xa and xb, thus making inadequate

to calculate the intermolecular components as stated formerly. To mitigate this discrepancy, it is

proposed to concatenate the subsystem components of Eq. 2, rather than summing them (ρIX =

ρxa |ρxb
). From this point, operations can be carried out as usual. Care should be taken, however, to

ensure that the components of ρX and ρIX are identically ordered prior to perform the subtraction.

2.3 Automatic detection of moieties for arbitrary chemical systems

The decoupling strategy described for BoB, SOAP, and MODA generally relies on partitioning

the contributions arising from either the same or different moiety. Consequently, the algorithm

designed to generate any of these descriptors must understand the connectivity of every atom in

the system to establish intra/intermolecular criteria. Datasets typically consist of hundreds or

thousands of data samples, thus it is required the automation of the process to detect different

moieties from a set of coordinates. In this work, we have tested two approaches to tackle this

problem, both based on graph theory algorithms. Before delving into the details, the graph

structure must be derived from the atomic coordinates.

A graph G = (V,E) is defined by the vertices V and edges E. Analogously, a molecule possesses

a set of atoms and bonds that can be directly mapped to V and E, respectively, by establishing

a distance criterion to determine whether two atoms are close enough to be mapped into G as

connected or disconnected. By iteratively performing this process, the graph adjacency matrix,

A, can be built, where the element aij is either 1 or 0 depending on the existence of a connection.

Graph theory provides useful techniques to search for sub-graphs (Gi ⊆ G of moieties) from a given

graph (the dimer or multi-moiety system), with A being its cornerstone. Among others, depth-first

search and spectral clustering-based (SC) techniques are typical choices. In this work, we have

implemented both approaches, but after experimentation, we found that the SC-based algorithm

yielded higher performance with lower computation times and more stable results.

Let L be the Laplacian matrix, obtainable as L = D−A, where D represents the degree matrix and

A is the adjacency matrix. The matrix D is diagonal and can be easily derived from A, as every
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diagonal element (dii) consists of the number of edges attached to the vertex vi (i.e., dii = deg(vi)).

Now, let the eigen-decomposition of L be

L = ULU † (4)

where U contains the eigenvectors in columns and L is a diagonal matrix containing the eigenvalues,

λi. Moreover, L is a positive semidefinite matrix, which must satisfy λi ≥ 0. Spectral clustering

theory states that the number of eigenvalues satisfying λk = 0 equals to the number of sub-

graphs (or moieties) of the total graph. Moreover, the nodes (or atoms) of each moiety can be

easily identified by inspecting the values of the eigenvectors, ui, with an associated λi = 0. The

components of these eigenvectors must have the following values:

uij =


1√
Ni

if vj ∈ Gi,

0 otherwise
(5)

In other words, the j-th component of ui is 1/
√
Ni if the vertex vj belongs to the i-th sub-graph

(Gi), and it is 0 otherwise. In the last equation, Ni represents the total number of nodes of the

i-th subgraph. Building upon that, the algorithm to detect moieties from a multi-moiety system

consists of the following steps:

1. Build the adjacency matrix A based on the distances of all atoms with the rest and a threshold

value serving as a distance cutoff (2.0 Å in our case based on Van der Waals radii).

2. Calculate the Laplacian matrix L as L = D − A, where D is easily obtained from A.

3. Diagonalize L to obtain the eigenvectors ui and their associated eigenvalues λi.

4. Identify the number of eigenvalues that satisfy λi = 0 and extract their associated eigenvec-

tors.

5. Group together all the nodes with non-zero components belonging to each sub-graph, Gi,

based on the values of their associated eigenvectors.
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3 Description of TTTA dataset

3.1 TTTA unit cell and the origin of PED

TTTA crystals present two stable phases depending on the temperature. On heating above 300 K

TTTA arranges in a paramagnetic, monoclinic phase (high-temperature or HT phase) containing

four columns of TTTA units (see "CX" labels in Fig. 2a) that stack equidistant on top of each

other (see "DX" labels in Fig. 2b) due to π-π interactions between the TTTA radicals. The

observed uniform stacking is a consequence of a rapid intra-stack Pair Exchange Dynamics (PED),

stemming from thermal fluctuations. Here, TTTA radicals continually swap the adjacent TTTA

neighbor (either upper or lower) with which they form a dimer (see Fig. 2c).

a)

b)

c)
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D1
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D3

d = 

Figure 2: (a) Top and (b) side views of the monoclinic polymorph unit cell of TTTA. Insets in (a)
and (b) provide labels to identify the TTTA dimers throughout the unit cell, where CX and DX
stand for column and dimer number X. (c) Schematic depiction of the Pair Exchange Dynamics
(PED) phenomenon. The path along the Potential Energy Surface (blue) features a double well,
illustrating that the dimerized TTTA π-stacks occupy a lower energy state than the equidistant
columns. It is noteworthy that the latter emerge as a time-resolved average when the thermal
energy is sufficient to facilitate transitioning between both dimerized ground-state configurations.

Following the same strategy of our previous works,3,4 the PED phenomenon can be studied through

solid-state AIMD simulations. In this case, the primitive HT polymorph cell of TTTA is extended

along the b (π-stacking direction) and c lattice parameters (see Fig. 2a-b), facilitating free move-
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ment of the TTTA units. This results in a total of 32 TTTA units. Subsequently, the positions of

all atoms within the TTTA dimer conformations (D1-D3) from each column (C1-C4) are extracted

from the AIMD trajectory, and the magnetic exchange coupling JAB is computed for each struc-

ture. Due to computational cost limitations, the time-evolution of JAB interactions was evaluated

only for a specific subset of radical pairs among the 32 TTTA units in the supercells. Specifically,

we focused on adjacent TTTA dimers along the π-stacking direction (D1 and D3 from Fig. 2b)

from the first and second columns, i.e., C1 and C2 columns of Fig. 2a. These are identifiable

via the dimer and column tags D1C1, D2C2, D3C1. Fig. 3a shows the time resolved JAB for the

selected dimers extracted from AIMD carried out at two different temperatures (250 K and 300

K), and Fig. 3b indicates the JAB distribution of each dimer.
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Figure 3: (a) Time-resolved JAB values across a 10 ps AIMD simulation for each TTTA pair ex-
amined in this study. (b) Density distribution of JAB. Blue curves indicate an AIMD temperature
of 300 K, whereas the red curves correspond to 250 K.
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3.2 Two-samples Kolmogorov-Smirnov test

In order to verify that sampled TTTA dimers from HT-300K and HT-250K explore a different

region of the thermally-available configurational space and, thus, some degree of extrapolation

exists from a model trained with HT-300K when predicting JAB for dimers extracted from HT-

250K, we have applied the 2-samples Kolmogorov-Smirnov (KS) test,5 which is a non-parametric

test used to evaluate the equality of continuous, one-dimensional probability distributions that

are derived from two independent samples. The null hypothesis (H0) asserts that the samples are

drawn from the same distribution, while the alternative hypothesis (H1) states that the samples

are drawn from different distributions. The KS test statistic (D) is used to evaluate which of the

two hypothesis is statistically correct and it is defined as the maximum absolute difference between

the empirical cumulative distribution functions (ECDF) of the two samples. Mathematically:

D = max |F1(x)− F2(x)| (6)

where F1(x) and F2(x) represent the ECDFs of the two samples coming from the empirical fi

distribution functions. Upon calculation of the test statistic, we can compare it to the critical

value from the Kolmogorov distribution (Dα), given the desired significance level (commonly α =

0.05) and the sample sizes. The value Dα can be calculated as:

Dα = cα

√
N1 +N2

N1N2

(7)

where N1 and N2 are the sample sizes, and cα is a constant depending on the significance level

that takes the approximate value of 1.36 for a significance level of α = 0.05.
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Figure 4: Two-samples Kolmogorov-Smirnov test results of HT-300K (orange) and HT-250K
(blue) samples of TTTA datasets. (a) Distribution (fd

HT-300K and fd
HT-250K) functions of centroid-

centroid distance (d) using Gaussian smoothing filters with different variances (s2) indicated in
the inset of each plot. (b) Analogous results when considering JAB distribution (fJAB

HT-300K and
fJAB

HT-250K). The insets of each plot also specify the p-value and D for the KS tests.

If the test statistic is greater than the critical value, we reject H0 in favor of H1, providing evidence

that the two samples are drawn from different distributions. Conversely, if the test statistic is

less than or equal to the critical value, we fail to reject the null hypothesis, indicating insufficient

evidence to claim that the distributions are different. A p-value can also be computed to summarize

the strength of the evidence against H0. A small p-value (≤ 0.05) provides strong evidence against

H0, suggesting the two samples are likely drawn from different distributions.

We employed the two-sample KS test to confirm that the HT-300K and HT-250K samples derive

from distinct distributions, thus indicating a substantial exploration of different regions of the
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potential energy landscape. Specifically, we applied the test to both the centroid-centroid distance

(denoted as d in Fig. 4b, with corresponding distributions fd
HT-300K and fd

HT-250K) and the JAB

distributions (fJAB
HT-300K and fJAB

HT-250K) from the HT-300K and HT-250K samples, respectively. The

panels in Fig. 4 display the distance (a) and JAB (b) distributions of HT-300K and HT-250K

together, with a chosen significance level of α = 0.05. While the KS test is typically applied to

continuous distributions, our distributions were generated by binning or discretizing the space.

To account for potential artifacts due to this discretization, we applied a Gaussian filter with a

variable smoothing factor controlled by the variance (s2) to both d and JAB distributions. Our

analysis revealed that for any chosen value of s2, the critical Dα value and p-value consistently

suggest a significant difference between the distributions. This observation implies that a certain

degree of extrapolation is likely to be present when modeling the data.

It is crucial to emphasize that the KS test assumes the independence of samples, whereas our data

stem from an AIMD simulation, inherently producing highly correlated data points. Nonetheless,

the total simulation time (10 ps) ensures ergodicity in our simulations, thereby facilitating a robust

and accurate sampling of d and JAB distributions. The principle of ergodicity allows us to consider

these time-dependent, correlated samples as effectively independent over the long term, allowing

the application of KS test in practice.

4 Further Agglomerative Clustering Results

4.1 Variation of the number of clusters

To delve deeper into the Agglomerative Clustering (AC) analysis, we present the clustering results

for MODA, BoB, and structure-average SOAP representations with varied cluster numbers in the

PHYL and THIL datasets. As discussed in the main text, AC models informed by the MODA

representation accurately capture the electronic structure information, which is crucial to classify

structures based on JAB. For the PHYL dataset, as demonstrated in Fig. 5, MODA maintains the

anticipated clustering symmetry across different cluster counts (nc) beyond the specific nc = 10

shown in the main text. In contrast, structure-average SOAP and BoB display clustering patterns

S-12



where the symmetry of JAB vs. θ is not preserved for any nc values, thereby reinforcing the

conclusions developed in the main text.
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Figure 5: Agglomerative Clustering outcomes for the PHYL dataset. The labels at the top specify
the descriptor in use, while the labels on the right indicate the number of clusters (nc) represented
in each plot.

In regard to the AC results of the THIL dataset, subtle differences in the clustering patterns can

be observed, especially in the nc = 2 and nc = 4 cases. While MODA results display a balanced

distribution across the samples, indicating a more coherent grouping of conformers with similar JAB

values, SOAP and BoB tend to generate slightly uneven distribution of clusters that occasionally

group structures with significantly different JAB values within the same cluster (as seen in the

blue and yellow clusters of Fig. 6 when nc = 4). However, it is important to note that these

differences are relatively minor and the overall performance of all descriptors remains comparable.

As illustrated in the main text, this can be attributed to the fact that JAB in the THIL dataset is

well-defined by structure-based descriptors.
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Figure 6: Agglomerative Clustering outcomes for the THIL dataset. The labels at the top specify
the descriptor in use, while the labels on the right indicate the number of clusters (nc) represented
in each plot.

4.2 Local vs. structure-average SOAP Agglomerative Clustering Re-

sults

As we continue to explore the performances of various descriptors, it is crucial to note that an ideal

descriptor should map PHYL’s conformations with identical JAB values to similar representations

at each branch of the pivotal point at θ = 30◦. In other words, we expect the dot product between

representations of data samples with the same JAB to approach 1. More generally, a given non-

linear similarity metric should approach 1. With this fundamental principle in mind, we turned our

attention to the non-linear RBF metric that euclideate pairwise similarity relations and quantifies

the correlation between data samples. This can provide qualitative insights about the performance

of a descriptor without using a predictive model. This metric allows us to produce a similarity

map for a sample (see Fig. 7). Our findings indicated that MODA displays a symmetric similarity

map around θ = 30◦, while the structure-average SOAP presents a gradual change throughout the
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Figure 7: Similarity maps associated with the (a) structure-average SOAP and (b) MODA
representations of the PHYL dimer along a change of θ. The color code indicates the similarity
between two samples, ranging from yellow (1, equal samples) to dark blue (0, orthogonal samples).

θ range. This gradual change suggests that equivalent representations for PHYL conformations

with identical JAB are not as clearly reflected by the structure-average SOAP.

However, as mentioned in the main text, structure-average SOAP may not leverage the full po-

tential of the descriptor. For this reason we employed the Regularized Entropy Match (REMatch)

method, in conjunction with the RBF kernel, to derive global similarity measures from the local

SOAP spectrum. This process involves assessing the impact of the entropy penalty parameter (α),

with distinct values of α employed for kernel computation. These specific α values were chosen

to evaluate local similarities in best match (α =0.01), intermediate (α =1.00), and average-like

regimes (α =10.0). Utilizing these similarity maps, we conducted the Agglomerative Clustering

analysis and contrasted the results with those obtained from structure-average SOAP and MODA.

Our qualitative assessment revealed a minor difference between the similarity maps produced by

the RBF-REMatch kernel (visible in the bottom panels of Fig. 8) and the RBF kernel used for

structure-average SOAP (see Fig. 7a). The local SOAP version succeeded in capturing relevant
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similarities among PHYL conformers that its structure-average counterpart could not discern.

Nevertheless, a persistent asymmetry remains in both the kernel and the resulting clustering pat-

tern independently of the α parameter of choice (see the top panels of Fig. 8), showing similar

limitations compared to the structure-average version.

α = 0.01 α = 1.00 α = 10.0

Figure 8: Agglomerative Clustering results with nc = 10 of PHYL dataset for the local SOAP.
Each column shows the results for a specific value of the entropy penalty parameter (α) of the
RBF-REMatch kernel.

5 Calculation of Molecular Orbitals for MODA

5.1 Natural Orbitals Extraction from the Density Matrix

As mentioned in the main text, our implementation of MODA uses the pySCF package to estimate

the density matrix using the Superposition of Atomic Densities (SAD) guess and subsequently

employs Natural Orbitals (NOs). However, pySCF does not provide the required functionality to

extract the NOs. Instead, a custom routine must be established. In this section, we present the

general formalism required to extract the NOs from the 1-body reduced density matrix and discuss

how to operate when dealing with open-shell systems such as radicals. To this end, let D be the

S-16



1-body reduced density matrix obtained, for instance, via the SAD "guess". D can be defined as:

D = CnCT (8)

Here, C corresponds to the unknown and target matrix containing the atomic orbital coefficients of

the NOs in columns, CT is its transpose, and n is a diagonal matrix with the occupation number of

each NO. Since C consists of an orthonormal set in a non-orthogonal Hilbert space, the following

equality must hold:

I = CTSC (9)

where I is the identity matrix and S is the overlap matrix associated with the non-orthogonality

of the basis. Multiplying equation 8 by SC on the right on both sides of the equation and using

the identity of equation 9 results in

DSC = CnCTSC

DSC = Cn

(10)

where CTSC simplifies according to equation 9. Now, we can modify equation 10 to obtain an

eigenvalue equation. Before that, it is essential to note that for a positive semidefinite matrix (i.e.,

its eigenvalues, λi, satisfy λi ≥ 0) such as S, it can be decomposed as S = S1/2S1/2,6 thus, we can

multiply equation 10 by S1/2 and proceed as follows:

S1/2DSC = S1/2Cn

S1/2DS1/2S1/2C = S1/2Cn

D′K = Kn

(11)

to obtain an ordinary eigenvalue equation in the last step,7 where the variable changes K = S1/2C

and D′ = S1/2DS1/2 are set for clear identification of the eigenvalue problem elements. From this

point, K and n can be simultaneously solved using standard numerical recipes to diagonalize D′.

Subsequently, the target NOs can be obtained via C = S−1/2K.

S-17



It is worth noting that S±1/2 matrices can be obtained by 1) diagonalizing S, 2) raising all the

eigenvalues of S to ±1/2, and 3) undoing the diagonalization of S, or mathematically:

S±1/2 = UΛ±1/2UT (12)

where U corresponds to the "maximum overlap orbitals"8 and Λ is the eigenvalues matrix associated

with S. Overall, the process of obtaining the NOs from the 1-body reduced density matrix requires

the numerical resolution of two eigenvalue problems.

Finally, it is important to note that the density matrix D is formed from the contributions of

both α and β electrons. Therefore, the density matrix can be expressed as D = Dα + Dβ. In

the case of closed-shell systems, Dα = Dβ holds true. However, this equality is not valid for

spin-polarized systems. Instead, each contribution to the density matrix is calculated individually

and then combined. This condition has been taken into account for all calculations involving D,

as this work primarily focuses on open-shell systems.

5.1.1 Sum of Doublets for Multi-moiety Systems

Kahn’s model9 for multi-moiety systems establishes a clear relationship between the singly-occupied

natural orbital (SONO) of each moiety and JAB. Consequently, our approach to the electronic

structure of dimers (e.g., PHYL and TTTA) involves calculating the SONO of each monomer prior

to obtaining the dimer’s SONOs as a linear combination of the monomers’ SONOs.

Consider a multi-moiety system defined by the set S = MA ∪ MB, where Mi represents the

subset of parameters ascribed to the i-th moiety. Let DMi
denote the 1-body reduced density

matrix of Mi. As discussed in the previous section, the natural orbitals (NOs), {ψij}, and their

occupations, {nij}, of each moiety can be derived from their respective density matrix expressions.

Consequently, the SONO of each moiety, ψi,SONO, can be identified as the only NO that satisfies

nij = ni,SONO = 1. Expanding on this, we can approximate the pair of SONOs for the multi-moiety

system using valence bond theory, as the positive (Φ+) and the negative (Φ−) linear combinations of

the monomer’s SONO. More precisely, the orthonormal SONOs of the dimer can be approximated
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as

Φ± =
1√

2(1± SAB)
(ψA,SONO ± ψB,SONO) (13)

where SAB = ⟨ψA,SONO|ψB,SONO⟩ denotes the overlap integral between the SONO of each moiety.

These are the sub-space of selected orbitals to construct MODA representations of the TTTA and

PHYL conformers.

5.2 TTTA Singly-occupied Natural Orbitals
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Figure 9: (a) Evolution of MODA components within a specific region of the AIMD where tran-
sitions from AFM to FM are prevalent. Labels denote particular time-steps likely to host stacked,
slipped, or intermediary configurations. (b) Schematic depiction of the Singly-occupied Natural
Orbitals (SONOs) of a TTTA dimer with isosurface value at 0.025 e/Å3, organized according to
the conformational structure and overlap (SAB).

Along the AIMD simulation, π-stacked TTTA dimers explore the potential energy surface due to

thermal fluctuations. By examining the various conformations along the AIMD, we can identify

two primary factors significantly influencing the JAB between adjacent stacked TTTA units: (a)

the distance between TTTA monomers, and (b) the slippage of one TTTA unit with respect to

the other. The effect of monomers drawing closer is well-known: it maximizes the overlap between

the TTTA’s SONOs, leading to a strong antiferromagnetic (AFM) coupling between the TTTA

units. In contrast, slippage results in a drastic reduction in overlap, dropping towards zero and

causing JAB ≥ 0. Indeed, when slippage is sufficiently large, the ungerade linear combination of

SONOs can achieve a higher overlap compared to the gerade combination, as exemplified in Fig.
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9b. Moreover, we showcase the evolution of MODA components during a fragment of the AIMD

simulation where JAB oscillates between antiferromagnetic (AFM) and ferromagnetic (FM) values

multiple times. In response to this, the MODA components also change sign (see Fig. 9a).

5.3 THIL & PHYL Singly-occupied Natural Orbitals

Fig. 10 displays the pair of SONOs of THIL, which correspond to the ungerade and gerade linear

combination of Atomic Orbitals.

a) b)

Figure 10: Pair of SONOs included in the MODA representation for THIL with isosurface value
of 0.025 e/Å3. a) corresponds to the ungerade and b) to the gerade orbitals.

Fig. 10 displays the pair of SONOs of PHIL, which correspond to the bonding and anti-bonding

inter-radical linear combination of SONOs of extreme θ = 0◦ and θ = 60◦ conformers. The SONO

of the PHYL monomer is also displayed.
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Figure 11: Illustration of the THIL’s structure and SONOs with isosurface value of 0.025 e/Å3

at eclipsed (left) and staggered conformations (right). The Molecular Orbitals are accompanied
by a blue/red label indicating bonding/antibonding linear combinations, both included in MODA
representation. Note that both eclipsed and staggered conformers present bonding and antibonding
orbitals with the same point group symmetry.

6 Analysis of intra- & intermolecular decoupling of MODA

and BoB

This section elaborates on the evolution of decoupled versions of both BoB (see Fig. 12) and MODA

(see Fig. 13). Similar to the discussion on SOAP in the main manuscript, the intramolecular

components of BoB and MODA do not evolve coherently with the time-resolved JAB values.

Conversely, the intermolecular components exhibit an apparent correlation with JAB. In line with

the examination of SOAP and MODA intermolecular components, BoB components present a

markedly lower degree of correlation compared to MODA. Analogous to SOAP, BoB can also

exhibit similar values across its components when the corresponding JAB values are drastically

different, as illustrated by comparing the green and purple highlighted regions in Fig. 14. On

the other hand, MODA exhibits a coherent representation with respect to JAB changes and thus

proves to be a more reliable descriptor.
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Figure 12: Decoupled intra- (a) and intermolecular (b) components of BoB along 10 ps of AIMD
simulation together with (c) the time-resolved JAB values for comparison. Each curve in (a) and
(b) corresponds to a feature of BoB, where the color scheme ranges from high variance (red) to
low variance (blue).
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Figure 13: Decoupled intra- (a) and intermolecular (b) components of MODA along 10 ps of
AIMD simulation together with (c) the time-resolved JAB values for comparison. Each curve in
(a) and (b) corresponds to a feature of MODA, where the color scheme ranges from high variance
(red) to low variance (blue).
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Figure 14: Comparison of intermolecular components of SOAP, BoB, and MODA. The time-
resolved JAB evolution is included for comparison. Green and purple boxes indicate regions with
extreme JAB values (largely AFM and slightly FM, respectively). Note that MODA is the unique
descriptor able to sharply differentiate the highlighted regions.

7 Explanation of the Cross-Validation Scheme

Leave-P-Out (LPO) and Leave-P-Groups-Out (LPGO) are cross-validation schemes frequently

used in model evaluation and selection. These are common tools in machine learning, statistical

analysis, and predictive modeling. These validation methods can be crucial in determining the

performance of a model, preventing overfitting, and enhancing generalizability.

The LPO method involves generating all possible combinations from the total number of samples

N , taking p samples out at a time (see scheme in Fig 15a). The number of combinations (or

folds) can be calculated using the binomial coefficient, N !/(p!(N − p)!). For each fold, the model

is trained on the remaining (N − p) samples, and hyperparameters are optimized before testing on

the selected p samples. The error metric is computed for each split, and the overall performance
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is obtained by averaging these metrics to obtain the cross-validated error.
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Figure 15: (a) Schematic representation of the possible combinations to generate all the cross-
validation folds within the leave-p-groups out procedure. The scheme indicates that train (blue)
and test (red) groups correspond to HT-300K dataset while validation (green) correspond to the
HT-250K. (b) Specific values for total groups and groups out (N and p, respectively) and the
percentage of training and number of folds that implies each combination. (c) Schematic repre-
sentation of the overlap between HT-300K and HT-250K distributions.

However, the number of folds is factorial in nature, which can quickly increase with large datasets.

This escalates computational cost and time complexity, making LPO practically unfeasible when

dealing with big data. This is where the LPGO cross-validation scheme offers a solution. Instead

of individual samples, LPGO treats groups of samples as the fundamental unit. In this context,

N refers to the total number of these groups. The technique partitions the data into N groups,

leaving p groups out for testing the model. By varying the total number of groups and the groups

left out, we can calculate the training size as the ratio (N − p)/N . Adjusting these two values

allows for the creation of a learning curve, offering insights into model performance as the amount

of training data changes (see Fig 15b).
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In cross-validation schemes, samples included in the test (p) and training (N−p) sets are routinely

exchanged. Moreover, the hyperparameter optimization process involves evaluation of the model

specifically on the test set, effectively using the test set as part of the training process. To further

prevent overfitting, a third set (validation set) can be added to the cross-validation process, thereby

adding another layer to model evaluation and tuning.

In this work, we employ an LPGO cross-validation strategy where we exploit the different origins

of our TTTA datasets, which come from different temperatures (HT-300K and HT-250K). Here,

samples from HT-300K are used within the LPGO scheme, while HT-250K samples are employed

as a separate validation set. As illustrated in Fig. 15c, the HT-300K and HT-250K datasets

contain samples that mutually overlap but also include samples unseen by the other. This is why

the evaluation of HT-300K error can indicate the model’s ability to interpolate, while the HT-250K

validation set can indicate both interpolation and extrapolation capabilities.

8 Notes on the Performance of Descriptors

Table 2 presents the computational cost and the number of features for each descriptor. In terms

of representation time (Rep. Time), BoB and SOAP require fractions of a second per sample,

while MODA (with 6-31+G* basis set) takes approximately half a second. For SOAP, the time to

compute a single element of the RBF kernel matrix (Kernel Time) is about twice as long than for

MODA and approximately 3.5 times longer than for BoB. The number of features (nº Features)

varies among the descriptors, with SOAP having the highest number.

The disparities in representation time and computational cost can be attributed to the intrinsic

characteristics of the descriptors (e.g., hyperparameters). MODA, despite requiring more time for

representation generation, provides crucial electronic structure information. On the other hand,

the higher cost for SOAP’s kernel computation can be attributed to the larger number of features

that it incorporates. This is due to the dot product calculation needed for the RBF similarity,

a process with computational cost proportional to the number of features. Notably, the kernel

matrix is real, symmetric and large for sizable datasets, resulting in a significant computational
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Descriptor Rep. Time (s) Kernel Time (s) nº Features
BoB 0.008 0.070 128

SOAP 0.007 0.243 1710
MODA 0.452 0.101 600

Table 2: Comparison of time requirements for generating representations (Rep. Time), computing
kernels (Kernel Time), and the number of features of the descriptor (nº Features). Times are given
per sample, while number of features is dimensionless.

toll during the training step (as it takes n(n − 1)/2 dot product evaluations for a dataset of size

n). However, its impact can be mitigated by dimensionality reduction techniques such as Principal

Component Analysis (PCA).

Regarding the impact of the representation length in the performance of the descriptor, we believe

that it is more related to the variance of each component (and the information that these carry, as

indicated by the covariance with the target property) rather than to the number of components.

This can be illustrated as follows: let S be the distance between two data samples, which – in

methods based on the "kernel trick" – is the centerpiece for the vast majority of kernels. If ρk and

and ρl are the vector representations of two samples of an arbitrarily large descriptor, S is simply:

S = ||ρk − ρl|| = ||∆ρ|| =
√∑

∀i

∆ρ2i (14)

where ∆ρ2i corresponds to the variation associated with the i-th component of ∆ρ. Then, the vari-

ation of the distance S (or the ordinary derivative of S, i.e. dS) can be recasted using differential

forms:

dS =
∑
∀i

d∆ρ2i

(
∂S

∂∆ρ2i

)
∆ρ2j ̸=i

=
1

2||∆ρ||
∑
∀i

d∆ρ2i (15)

where the partial derivative of S with respect to the i-th variation, ∆ρ2i , is

(
∂S

∂∆ρ2i

)
∆ρ2j ̸=i

=
1

2
√∑

∀i ∆ρ
2
i

=
1

2||∆ρ|| (16)

The result of eq. 15 shows that the determining effect on the distance and, thus, on the differential

performance of a regression model is determined by the variation associated with each component
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(∆ρ2i ). In summary, the effect of having both relevant components presenting strong variations

(∆ρ2i ≫ 0) and uninformative features that are hardly varying (∆ρ2i ≈ 0) is more important for the

model performance than the total number of components itself. However, when one, or a significant

set, of uninformative components substantially contribute (∆ρ2i ≥ 0) to the total variation (||∆ρ||),

then the descriptor is not appropriate for the task entailed (as dS/d∆ρ2i ∝ ||∆ρ||−1 ∝ ∆ρi).

An indicative metric of the quality of the information carried by a component is its covariance

with respect to the target property, JAB in our case. As we demonstrate in our variance-covariance

analysis (discussed in the main text), MODA is the most appropriate descriptor for this purpose.
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