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Supplementary Notes

Supplementary Note S1: Data augmentation of theoretical XRD spectra

        Data augmentation is typically employed to expand the size of the training data, thus bolstering 

the model generalization and avoid overfitting. It facilitates the acquisition of valuable features by 

exposing it to diverse perspectives and representations. Given that various synthesis methods often 

yield MOFs with varying sizes, morphologies, and crystalline structures, it becomes practical to 

replicate these phenomena. Simulation of these features includes (1) peak scaling1 and (2) peak 

elimination,2 which can be associated with preferred orientation and phase transitions, as well as 

(3) peak shifting3 resulting from variations in lattice parameters, grain size, and instrumental 

factors. In this context, a physics-informed data augmentation technique was utilized to replicate 

these phenomena.4 Before data augmentation, the XRD spectra were described as a discrete 

function f(2theta) = I → R+, where I refers to a set of discrete angles and R+ means the peak 

intensity. In detail, three sequential transformation functions, denoted as , , and 𝑓1(𝑆,𝑐,𝑛) 𝑓2(𝑆,𝑛)

, were developed to augment the XRD spectra.𝑓3(𝜀)
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(1) Peak scaling is achieved by applying a scaling factor, denoted as c, to a randomly selected 

subsets of peaks corresponding to angles S_n. This accounts for variations in preferred 

orientations.

 (1)𝑓1(𝑆,𝑐,𝑛) = 𝑓(𝑆𝑛) × 𝑐𝑛+ 𝑓(𝐼\𝑆𝑛)

(2) Peak elimination is carried out along the 2theta axis by nullifying the intensities at randomly 

selected angles S_n with a specific probability of 0.7. 

  (2)𝑓2(𝑆,𝑛)= 𝑓(𝑆𝑛) × 0 + 𝑓(𝐼\𝑆𝑛)

(3) Peak shifting is performed by introducing a small random shift  along the 2theta axis, causing 𝜀

either a blue shift (to lower angles) or a red shift (to higher angles) across the entire XRD spectra. 

This accounts for variations in lattice parameters, grain size, and instrumental factors.

  (3)𝑓3(𝜀)= 𝑓(2𝜃 ‒ 𝜀)

In contrast to the approach in the literature,4 where the length of S_n is fixed, in this context, a 

random length of S_n was employed. This randomization strategy yielded notably improved 

prediction accuracies, particularly for the Top-1 accuracy, which exhibited an increase of nearly 

10%, as illustrated in Figure S2. This approach contributes to a more diverse and resilient 

collection of augmented data.

Supplementary Note S2: Data preprocessing of experimental XRD spectra

Two steps of the Savitzky-Golay smoothing and background subtraction were employed to 

preprocess these experimental XRD spectra.4

1. Savitzky-Golay smoothing

        The Savitzky-Golay smoothing is a signal processing technique that preserves the underlying 

trends while reducing the impact of noise. It works by fitting a local polynomial regression model 
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to a small window of data and estimating the smoothed values for each point. Here, a Savitzky-

Golay filter with a window size of 21 and a polynomial degree of 3 was employed to eliminate 

high-frequency noise.

2. Background subtraction

        XRD spectra often contain background signals caused by various factors like solvent 

absorption, instrument noise, scattering, or fluorescence from impurities. Background subtraction 

is essential in materials spectroscopy analysis since it helps reveal the true spectral signatures of 

the materials being studied. Accurate background subtraction can improve the precision of 

measurements and aid in the identification and characterization of the materials. First, a peak-

finding function (scipy.signal.find_peaks) was employed to identify a peak window in the 

smoothed spectra. Specifically, the prominence and the width of the peak window were set to be 

0.5 and 1, respectively. For more accurate peak identification, spurious peaks caused by noise were 

sifting out. Then, the minimum values within this peak window were screened using the 

np.partition function. Finally, the values of the peak window were subtracted by this minimum 

number to accentuate the peaks. 

Supplementary Note S3: Details of decision tree for scoring hyperparameters of ViT-XRD 

model

        First, the ViT-XRD model was trained individually using combination of hyperparameters 

for at least 10 times. Then, the combination of the hyperparameters and the performance (Top-1, 

Top-3, and Top-5 accuracies) as the input and output were fed to a decision tree model. Figures 

S5, S6, and S7 provide a graphical representation of the decision tree models for Top-1, Top-3, 

and Top-5 accuracies, respectively. This approach offered a comprehensive understanding of the 
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performance landscape, aiding in not only identifying the optimal hyperparameter combinations 

but also in understanding the relative importance of each hyperparameter in the prediction 

accuracies.

Supplementary Note S4: t-SNE for dimension reduced visualization 

        As a dimension-reduction technique, t-SNE maps the high-dimensional data into 2D space 

while preserving the structure and relationship among data points. In our case, t-SNE was 

employed to reduce the dimensions of (1) the theoretical XRD spectra of 2000 MOFs, 

representations learned by (2) the CNN-XRD model, and (3) the ViT-XRD model. The 

representations learned by the CNN-XRD and ViT-XRD models were generated by outputting the 

last full-connected layer and the last layer of the Transformer encoder, respectively. Consequently, 

three 2D space maps were obtained, shown in Figure 4. For the ViT-XRD model, the features from 

the layer of the Transformer encoder were used. For the CNN-XRD model, we utilized features 

from the penultimate fully connected layer, as the last layer contains a softmax activation which 

is not ideal for t-SNE visualization.

        Identification of 5 MOFs sharing the isolated distance. A k-nearest neighboring algorithm 

was developed to compute the Euclidean distance of each MOF to its neighbors in the dimension-

reduced 2D space (Figure 4a). Then, the Euclidean distance was sorted, and the top five values 

were selected as the highest isolation distances. 

        Identification of 5 MOFs sharing the closest distance. The density-based spatial clustering of 

Applications with Noise (DBSCAN) algorithm was developed to locate the most densely clustered 

MOFs. The five most densely populated clusters were identified based on the frequency of unique 

labels. 
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Supplementary Figures

Figure S1. Architecture of the CNN-XRD model. 
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Figure S2. Flowchart of data augmentation procedure. (a) Original data. (b) Peak elimination. 

(c) Peak scaling. (d) Peak shift. 
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Figure S3. Prediction accuracies of Top-1, Top-3, and Top-5 over augmentation methods of ours 

and literature.4
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Figure S4. Representative XRD spectra of the ten MOFs. (a) ZIF-7, (b) ZIF-8, (c) ZIF-9, (d) ZIF-

67, (e) ZIF-71, (f) ZIF-90, (g) MOF-2, (h) MOF-5, (i) MOF-74, and (j) MOF-199. Here, 'Theo', 

'Exp', and 'Aug' refer to theoretical, experimental and augmented data.
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Figure S5. Visualization of a decision tree for assessing hyperparameter importance in 

determining the Top-1 prediction accuracy.
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Figure S6. Visualization of a decision tree for assessing hyperparameter importance in 

determining the Top-3 prediction accuracy.
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Figure S7. Visualization of a decision tree for assessing hyperparameter importance in 

determining the Top-5 prediction accuracy.
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Figure S8. Heat maps of the learned attention weights from the ViT-XRD model across four heads 

across all encoder layers over the XRD spectrum of (a) ZIF-8, (b) ZIF-67, (c) MOF-74, and (d) 

MOF-199.
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Figure S9. Prediction accuracies of Top-1, Top-3, and Top-5 and training time of ViT model over 

different 2theta ranges of XRD spectra.

Figure S10. Prediction accuracies of Top-1, Top-3, and Top-5 as well as training time of transfer 

learning and non-transfer learning on FTIR data under different Embed_dim. (a) 120 and (b) 240.
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Figure S11. Prediction accuracies of Top-1, Top-3, and Top-5 as well as training time of transfer 

learning model over different augmentation times. (a) 10 times, (b) 20 times, (c) 30 times, and (d) 

40 times. 
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Figure S12. Prediction accuracies of Top-1, Top-3, and Top-5 as well as training time of transfer 

learning model over different number of organic molecules. (a) 500, (b) 1000, (c) 2000, and (d) 

3000.
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Supplementary Tables

Table S1. Comparison of prediction accuracies and training times over various models.

Accuracies (%)
Model

Top-1 Top-3 Top-5
Time (s)

NB 10 16.7 16.7 3.4±0.04

KNN 36.7 63.3 66.7 1.8±0.05

LR 63.3 93.3 100 4113±38.23

RF NA NA NA NA

XGB NA NA NA NA

CNN 60.0±5.58 87.6±2.23 89.5±2.90 378.5±69.7

ViT 70.0±7.41 93.2±3.68 94.9±3.01 268.9±14.14

Table S2. The CCDC numbers and full names of ten extra MOFs that are displayed in Figure 4.

CCDC numbers Full name

RECHOX
catena-(bis(μ2-bis(1-Methyl-2-thioxo-4-imidazolin-3-yl)methane)-silver(i) 
tetrafluoroborate)

REFLAQ
catena-(pentakis(μ2-2,2'-Bi-imidazole)-bis(2,2'-bi-imidazole)-hexa-silver tetraperchlorate 
bis(acetate) tetrahydrate)

COLMUM
catena-((μ2-3,5-dihydroxybenzoicacid-O,O)-(μ2-aqua)-diaqua-sodium 3,5-
dihydroxybenzoate dihydrate)

REFFIT
catena-(bis(1-n-Butyl-2,3-dimethylimidazolium) tetrakis(μ4-4,4'-oxybis(benzoato)-
O,O,O',O'',O''')-bis(μ4-4,4'-oxybis(benzoato)-O,O',O'',O''')-bis(μ3-hydrogen 4,4'-
oxybis(benzoato)-O,O',O'')-hexa-magnesium)

DIWXUD01
catena-(octakis(μ2-Oxo)-bis(1-(4-pyridyl)-2-(4-pyridinio)ethylene)-tetraoxo-cobalt(ii)-
tetra-vanadium)

ZIDXAN
catena-[bis(μ5-Adamantane-1,3-dicarboxylato)-(μ2-1,1'-butane-1,4-diylbis(2-methyl-1H-
imidazole))-tetra-silver dihydrate]

LOGXIQ
catena-[tris(2,2'-bipyridine)-ruthenium tetrakis(μ-selenido)-tetracosakis(μ-
benzenethiolate)-tetrabromo-heptadeca-cadmium]

RAXCUQ
catena-((μ4-Azobenzene-3,3',5,5'-tetracarboxylato)-bis(μ2-1,3-bis(imidazolyl)propane)-di-
zinc dihydrate)

NEFQAR
catena-((μ2-isophthalato-O,O')-aqua-tris(pyridine)-nickel(ii))

REFMAS
catena-((μ2-Isophthalato)-(2,2'-ethane-1,2-diylbis(1H-benzimidazole))-cobalt)
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