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1 Size and composition of molecules in the dataset

Fig. S1 illustrates the distribution of molecule sizes in the dataset. Out of the 14,346 molecules in the dataset, most
of them have less than 40 non-hydrogen atoms. Fig. S2 shows the number of molecules containing at least one of
the 10 most common atom types; the proportion of molecules with atoms other than those shown is negligible.
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Figure S1: Distribution of molecular sizes: number of non-hydrogen atoms per molecule.

Figure S2: Distribution of atomic composition of molecules: number of molecules containing at least one of the 10
most common atom types in the dataset.
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Figure S3: Pattern matching algorithm used to recognize the presence of functional groups, using ethanol as
example.

2 Identification of functional groups

Fig. S3 illustrates the pattern matching algorithm used to recognize the presence of functional groups in ethanol.
The algorithm takes as inputs an INChI string and a list of structural patterns in SMARTS notation (Section 2).
Each SMARTS pattern is designed to recognize a functional group. The output is a vector encoding the presence of
a functional group with a “1”, or “0” otherwise. In the example of ethanol, the algorithm identifies the signature of
an alkane and an alcohol group, and encodes both in the target vector with “1”.; absent groups are encoded as “0”.
In contrast to Nalla et al, who assign a single dominant functional group per molecule1, we keep all the functional
groups identified in the molecule, since each functional group will result in a particular spectral signature. In the
case of ethanol, both O-H and CH3 bands are observed in its FTIR spectrum. The complete list of SMARTS
sub-patterns used in this work can be found in Table 2.

3



Functional Group SMARTS Pattern

Alkane [CX4;H0,H1,H2]
Methyl [CH3X4]
Alkene [CX3]=[CX3]
Alkyne [CX2]#C
Alcohols [#6][OX2H]
Amines [NX3;H2,H1;!$(NC=O)]
Nitriles [NX1]#[CX2]
Aromatics [$([cX3](:*):*),$([cX2+](:*):*)]
Alkyl halides [#6][F,Cl,Br,I]
Esters [#6][CX3](=O)[OX2H0][#6]
Ketones [#6][CX3](=O)[#6]
Aldehydes [CX3H1](=O)[#6]
Carboxylic acids [CX3](=O)[OX2H1]
Ether [OD2]([#6])[#6]
Acyl halides [CX3](=[OX1])[F,Cl,Br,I]
Amides [NX3][CX3](=[OX1])[#6]
Nitro [$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8]

Table S1: SMARTS patterns for the functional groups. The way functional groups are grouped adhere to the
scheme employed in preceding literature, and thus enables us to compare between the classification accuracy of our
model to references2,3

.
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3 Repeatability

As explained in Section 2.3, we examine the learnt patterns of a specific convolutional neural network. Since
neural networks learn slightly different features dependent on the starting randomly initialized weights, these learnt
patterns do not necessarily generalize across neural networks. We therefore examine the generalisation across
differently seeded neural networks. Since the patterns learnt in the convolutional layers will be permuted across
neural networks it is not possible to compare them without strong further assumptions. Instead we focus on
comparing the important positions for each functional group across neural networks.

In Fig. S4 we visualize the maximum weight across all channels for each neural network across neural networks
trained with the same architecture and training procedure but different random seeds. If large values are consistent
in location across neural networks, we can conclude that the learnt features are robust.

Evidenced by the tight bound of the standard deviation around the mean, we can conclude that important
features are largely universal between neural networks.

5



0.0

0.1

0.2

0.3

al
ka

ne

0.0

0.1

0.2

0.3

m
et

hy
l

0.0

0.1

0.2

0.3

al
ke

ne
0.0

0.1

0.2

0.3

al
ky

ne

0.0

0.1

0.2

0.3

al
co

ho
ls

0.0

0.1

0.2

0.3

am
in

es

0.0

0.1

0.2

0.3

ni
tri

le
s

0.0

0.1

0.2

0.3

ar
om

at
ics

0.0

0.1

0.2

0.3

al
ky

l h
al

id
es

0.0

0.1

0.2

0.3

es
te

rs

0.0

0.1

0.2

0.3

ke
to

ne
s

0.0

0.1

0.2

0.3

al
de

hy
de

s

0.0

0.1

0.2

0.3

ca
rb

ox
yl

ic 
ac

id
s

0.0

0.1

0.2

0.3

et
he

r

0.0

0.1

0.2

0.3

ac
yl

 h
al

id
es

0.0

0.1

0.2

0.3

am
id

es

400 1000 1500 2000 2500 3000 3500 4000
Wavenumber (cm 1)

0.0

0.1

0.2

0.3

ni
tro

Figure S4: Weights of classifiers across randomly-initialized instances of the CNN. For each functional group we take
the maximum weight (maximum taken across channels) across ten neural networks trained with different random
seeds. We visualize the mean and standard deviation. Important regions (marked by high values) are constant
across neural networks, indicating that similar features are learnt.
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4 Weights of dense layer for all classifiers
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Figure S5: Group frequencies. Strong, mid and weak bands appear in dark, mid and light purple, respectively.
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Figure S6: Weights of the alkane classifier
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Figure S7: Weights of the methyl classifier
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Figure S8: Weights of the alkene classifier
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Figure S9: Weights of the alkyne classifier
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Figure S10: Weights of the alcohols classifier
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Figure S11: Weights of the amines classifier
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Figure S12: Weights of the nitriles classifier
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Figure S13: Weights of the aromatics classifier
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Figure S14: Weights of the alkyl halides classifier
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Figure S15: Weights of the ester classifiers

9



400 1000 1650 2000 2500 3100 3500
Wavenumber (cm 1)

Ch
an

ne
l Ketones

0.0000

0.0650

0.1294

Figure S16: Weights of the ketones classifier
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Figure S17: Weights of the aldehyde classifiers
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Figure S18: Weights of the carboxylic acids classifier

400 1000 1650 2000 2500 3100 3500
Wavenumber (cm 1)

Ch
an

ne
l Ether

0.0000

0.0795

0.1581

Figure S19: Weights of the ether classifier
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Figure S20: Weights of the acyl halides classifier
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Figure S21: Weights of the amides classifier
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Figure S22: Weights of the nitro classifier
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5 Class correlations

In Fig. S23 we visualize correlations between different functional groups being present. As can be seen, e.g. alkane
and aromatics are less likely to be present in the same spectrum while ester and ether are likely to be present in
the same spectrum.
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Figure S23: Correlation plot

6 Performance on out-of-distribution combinations

Some combinations of functional groups being present or not present are particularly common. We examine how
the performance of the neural network for a particular functional groups changes dependent on other functional
groups being present or not. Looking at Fig. S23, we identify the five most common combinations of functional
groups being present or not present. The correlation coefficients are given in Table S2.

Note that the correlation coefficient for some pairings such as aromatics and alkane is negative, indicating that
aromatics make it less likely for alkane to be prsent and vice versa. For each functional group in each pair we
calculate the AUC metric if the other group is present and not present respectively.

We represent the results by showing the AUC score for a particular group when the paired group is not present
on the left and the AUC score when the paired group is present on the right in Table S2.

Since we have identified the five pairings with the highest absolute correlation coefficient, we show the f1 score
for 10 functional groups. For two of the groups there are no examples of the atypical pairing (there are no spectra
with esters but no ether or carboxylic acid but no alcohol respectively).

We can see that the performance drop is relatively minor if a comparison can be made, i.e. if all possible
combinations are in the test dataset.
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Corr coeff AUCnoGroup2 AUCGroup2

Group 1 Group 2

alkane aromatics -0.46 0.95 0.95
aromatics alkane -0.46 0.99 1.00
alkyl halides methyl -0.36 0.90 0.91
methyl alkyl halides -0.36 0.95 0.98
alkene aromatics -0.27 0.97 0.91
aromatics alkene -0.27 1.00 0.99
alcohols carboxylic acids 0.46 0.98 N/A
carboxylic acids alcohols 0.46 N/A 0.99
esters ether 0.61 N/A 0.97
ether esters 0.61 0.98 N/A

Table S2: Summary of the model performance for atypical and typical pairings of functional groups. Note that
some AUC can not be calculated as one of the pairings (e.g. no alcohol but carboxylic acid) does not exist.
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7 Spectra within the 2400-2700 cm−1 region

Figure S24: Sub-samples of infrared spectra from small organic molecules within the 2400-2700 cm−1 region, for
all studied functional groups. Each figure shows the overlap for spectra where the corresponding functional gropup
is absent and present. The black dotted line indicates the median spectrum.
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