
Supplementary Information

A Implementation Details

A.1 Graph Neural Networks

Our implementation of CGCNN and TorchMD-Net utilizes the MatDeepLearn package [36] as a backbone. Graph
representations are calculated through the algorithms released by the Open Catalyst Project (OCP) [38].

We report the main hyperparameters for CGCNN and TorchMD-Net below.

Table A.1: CGCNN hyperparameters for pre-training on MP Forces
Parameter Value or description

Dimension 1 100
Dimension 2 150
Pre-graph convolution FC layers 1
Graph convolution 4
Post-graph convolution FC layers 3
Activation function silu
Dropout rate 0
Pooling Global add pool
Pool order Early

Table A.2: TorchMD-Net hyperparameters for pre-training on MP Forces
Parameter Value or description

Hidden channels 128
Number of filters 128
Number of layers 8
Number of RBF 50
RBF type expnorm
Trainable RBF True
Activation silu
Attention activation silu
Number of heads 8
Distance influence both
Number of post layers 2
Post hidden channels 128
Pooling Global add pool
Pool order Early

A.2 Training Settings

Pre-training datasets, namely MP Forces and MP Forces Relaxed, are split on a train:test:val ratio of
0.8:0.15:0.05. All finetuning datasets are split on a train:test:val ratio of 0.6:0.2:0.2 to ensure con-
sistency and fair comparison. Models are pre-trained for 100 epochs and finetuned for 200 epochs for all datasets.

For graph representation generation, we used a cuto↵ radius of 8.0 and a maximum neighbor count of 250.

In the case of pre-training via denoising, the amount of noise added to atomic positions is generated according to
a normal distribution of zero mean and a standard deviation of 0.1.

Several di↵erent GPU models are used in this work, including NVIDIA A100 80GB, NVIDIA A100 40GB, and
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NVIDIA A40 48GB. Pre-training of CGCNN and TorchMD-Net on MP Forces takes approximately 10 and 60
hours respectively on a single A100 80GB GPU.
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B Errors on Main Results

Here we present tables detailing the standard errors associated with the main results. Each entry in the main
results tables represents the average of 5 runs. To quantify the uncertainty, we calculate the error as the standard
deviation divided by the square root of 5:

Standard Error =
Standard Deviationp
# of Measurements

Table B.1: Standard errors associated with Table 2.

JDFT Phonons Dielectric GVRH KVRH Perovskites 2D MOF Surface MP gap MP form

Baseline ±4.37 ±4.18 ±0.0169 ±0.00124 ±0.00118 ±0.000294 ±0.00366 ±0.0104 ±0.00121 ±0.00351 ±0.000516

F
o
rc
es

1:0:0 ±5.46 ±3.86 ±0.0535 ±0.00173 ±0.00058 ±0.000741 ±0.00326 ±0.0029 ±0.000717 ±0.00198 ±0.00216

0:1:0 ±3.32 ±4.40 ±0.00634 ±0.00524 ±0.0178 ±0.000529 ±0.00546 ±0.00229 ±0.000964 ±0.00545 ±0.00296

0:1:1 ±5.82 ±5.40 ±0.0277 ±0.00146 ±0.00180 ±0.000709 ±0.00569 ±0.00339 ±0.00137 ±0.00258 ±0.00181

1:1:1 ±5.14 ±2.21 ±0.0129 ±0.00246 ±0.000986 ±0.000511 ±0.00481 ±0.00101 ±0.00110 ±0.00262 ±0.00143

1:500:500 ±3.49 ±3.20 ±0.0265 ±0.000812 ±0.00126 ±0.000298 ±0.00546 ±0.00235 ±0.000662 ±0.00180 ±0.00336

Derivative-based

denoising
±2.17 ±7.74 ±0.0343 ±0.00207 ±0.00109 ±0.000422 ±0.00616 ±0.0513 ±0.00209 ±0.00365 ±0.000975

Prediction head

denoising
±3.87 ±2.39 ±0.0360 ±0.00212 ±0.0132 ±0.000628 ±0.00585 ±0.00483 ±0.000874 ±0.00268 ±0.00350

Table B.2: Standard errors associated with Table 3.

JDFT Phonons Dielectric GVRH KVRH Perovskites 2D MOF Surface MP gap MP form

Baseline ±2.32 ±4.34 ±0.0356 ±0.00132 ±0.0021 ±0.0000842 ±0.00421 ±0.00138 ±0.00117 ±0.00181 ±0.000339

F
o
rc
es

1:0:0 ±5.46 ±3.86 ±0.0535 ±0.00173 ±0.00058 ±0.000741 ±0.00326 ±0.0029 ±0.000717 ±0.00198 ±0.00216

0:1:0 ±3.32 ±4.40 ±0.00634 ±0.00524 ±0.0178 ±0.000529 ±0.00546 ±0.00229 ±0.000964 ±0.00545 ±0.00296

0:1:1 ±5.82 ±5.40 ±0.0277 ±0.00146 ±0.00180 ±0.000709 ±0.00569 ±0.00339 ±0.00137 ±0.00258 ±0.00181

1:1:1 ±5.14 ±2.21 ±0.0129 ±0.00246 ±0.000986 ±0.000511 ±0.00481 ±0.00101 ±0.00110 ±0.00262 ±0.00143

1:500:500 ±3.49 ±3.20 ±0.0265 ±0.000812 ±0.00126 ±0.000298 ±0.00546 ±0.00235 ±0.000662 ±0.00180 ±0.00336

Derivative-based

denoising
±3.25 ±7.66 ±0.0333 ±0.00122 ±0.000833 ±0.000259 ±0.00831 ±0.00223 ±0.00086 ±0.00207 ±0.000333

Prediction head

denoising
±3.66 ±12.7 ±0.0206 ±0.00198 ±0.00052 ±0.000558 ±0.00761 ±0.0039 ±0.000587 ±0.00109 ±0.000261
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C Parity Plots of Forces For Pre-trained Models
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Figure C.1: Parity plots of forces prediction versus ground-truth labels. Axes are trimmed to [�100,+100]. a)
CGCNN pre-trained models. b) TorchMD-Net pre-trained models. c) CGCNN pre-trained for di↵erent number of
epochs on ratio �energy : �forces : �stress = 0:1:0. d) CGCNN pre-trained for di↵erent number of epochs on ratio
�energy : �forces : �stress = 1:500:500.
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D Embedding Visualization

To understand the nature of the benefit to finetuning performance from pre-training with energies and forces,
we visualized the node-level embeddings for the CGCNN and TorchMD-Net models trained under the di↵erent
ratios. Specifically, principal component analysis (PCA) is applied to 50,000 uniformly selected atom embeddings
from the training split in the MP Forces dataset for a visualization in the two-dimensional space. It should be
noted that both the derivative-based denoising and prediction head denoising models are trained on the smaller
MP Forces Relaxed dataset. Consequently, it is possible that these two denoising models have not been exposed
to some of the 50,000 atoms in the dataset.

We observe that the embeddings for CGCNN prediction head denoising is dissimilar from the rest. Our hypothesis
is that this divergence stems from the fact that this particular model hasn’t e↵ectively learnt during the pre-training
phase, as supported by its training loss barely decreasing and plateauing very early on.
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Figure D.1: Visualization of atom embedding space wherein atoms are categorized into S, P, D and F blocks on the
periodic table. Principal component analysis (PCA) is applied to all atomic representations in the training split
of the MP Forces dataset, and 50,000 uniformly selected atoms are chosen to be plotted. a) CGCNN pre-trained
models. b) TorchMD-Net pre-trained models.
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