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S1 Model-guided Optimization Algorithms

Algorithm S1: Multi-objective Bayesian optimization using scalarization

Input: Objective function f : z — RN weight vector A = [A1,..., A\y], surrogate
model f , candidate set X', acquisition function « : z — R, initial
observation size by, batch size b

Select random subset of design space: Xy C X : |Ay| = by

Initialize dataset: Dy « {(x, A-f(z)) : z € Ay}

fort<1...7T do

Train f on D,

5 Select new batch: X, « argmax 3. a(z; f, Di_y)
Xt CX | X |=b z€X:

W N =

6 | Update dataset: D; <— Dy U{(x, A-f(x)): x € &}
7 end
Output: argmax A - f(z)

x€Dy

Algorithm S2: Multi-objective Bayesian optimization using Pareto optimization

Input: Objective function f : 2 — R, surrogate models {f™}_  candidate set

X, acquisition function « : x — R, initial observation size by, batch size b
Select random subset of design space: Xy C X : |Xp| = by
Initialize dataset: Dy « {(x, f(x)) : x € Xp}
Calculate Pareto front: Py <— pareto front(Dj)
fort«<1...7T do
forn<1...N do
‘ Train f™ on {(z, f,): z, f(z) € Dy}
end
Select new batch: X, «— argmax S a(z; {f/™}, D, 1, P1)
XiCX | Xe|=b zEX,
9 Update dataset: D; < D, U{(z, f(x)) : x € X}
10 Update Pareto front: P; < pareto_front(D;)
11 end
Output: Pr

o N o vtk W N =
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S2 Performance Metrics
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Figure S1: Illustration of the Pareto optimization evaluation metrics considered in this work.
(A) Definition of true top-k molecules through non-dominated sorting. Here, the top 30% are
shown in red. (B) Hypervolume metric. (C) Inverted generation distance, which averages the
shortest distance between points on the true Pareto front (red) and acquired points (blue).
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S3 Additional Metrics to Compare Acquisition Functions
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Figure S2: Fraction of hypervolume acquired across iterations (A, C, E) and after six itera-
tions (B, D, F) for three case studies. All cases minimized docking scores to one target and
maximized docking scores to one off-target. Cases 1, 2, and 3 aimed to identify putative
selective inhibitors of DRD3 over DRD2, JAK?2 over LCK, and IGF1R over CYP3A4, respec-
tively. Docking scores to all targets were extracted from from the published DOCKSTRING
dataset of 260k molecules.5! 1% of the virtual library was acquired at each iteration using
top-k batching. Error bars (B, D, F) and shaded regions (A, C, E) denote + one standard
deviation across five runs.
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Figure S3: Inverted generational distance5%3 (IGD) after six iterations for three case studies,
calculated with the python package pymoo.3* IGD quantifies the distance between the true
Pareto front and the solution set. While IGD measures the quality of solution sets and
captures the uniformity of solution set distributions, the metric can be misleading because is
not Pareto compliant and requires a uniformly distributed Pareto front.5> All cases minimized
docking scores to one target and maximized docking scores to one off-target. Cases 1, 2, and
3 aimed to identify putative selective inhibitors of DRD3 over DRD2, JAK2 over LCK, and
IGF1R over CYP3A4, respectively. Docking scores to all targets were extracted from from
the published DOCKSTRING dataset of 260k molecules.®! 1% of the virtual library was
acquired at each iteration using top-k batching. Error bars denote £ one standard deviation
across five runs.
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S4 Molecular Diversity Visualization

2-dimensional projections of molecular fingerprints can illustrate molecular diversity in a
qualitative sense. We use UMAP projections® to visualize the improvement in molecular
diversity of acquired points with diversity-enhanced acquisition strategies. Figure S4 shows
UMAP projections of acquired points at iterations 1, 3, and 5 for single experiments using
different diversity-enhancing acquisition strategies. These experiments were for the identifi-
cation of putative IGF1R inhibitors with selectivity over CYP3A4. UMAP embeddings were
trained on the entire searched library, shown as blue density plots. Diversity is compared for
acquisition that implements no clustering, clustering in the feature space, clustering in the
objective space, and clustering in both spaces. The acquired molecules (red points) are qual-
itatively more dispersed across the chemical space spanned by the library when compared
to the points acquired without clustering. While the visualization of molecular diversity
through dimensional reduction is qualitative in nature, the difference in the chemical space
acquired in the two runs suggests that diversity-enhanced acquisition improves the structural

diversity of acquired points.
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Figure S4: UMAP projections demonstrating molecular diversity of acquired points using
standard and diversity-enhanced acquisition. Each row is a single run using the specified
diversity-enhanced acquisition strategy with PHI. The runs corresponding to each row were
initialized with the same random set of acquired points at iteration 0 and the same model
seed. Docking scores computed with DOCKSTRINGS! to IGF1R and CYP3A4 were mini-
mized and maximized, respectively, to identify putative selective inhibitors of IGF1R. Points
acquired at iterations 1, 3, and 5 are shown for the four acquisition strategies tested in red.
UMAP projections were trained on the entire virtual library (shown as a blue density behind
acquired points).



S5 Large-Scale Multi-Objective Screen Results
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Figure S5: Docking poses of one non-dominated molecule (M4, Figure S6) predicted to se-
lectively bind IGF1R and EGFR over CYP3A4. Docking poses were computed with DOCK-
STRING,5! an AutoDock Vina wrapper with prepared docking settings for IGF1R, EGFR,
and CYP3A4. The Enamine screening databaseS” of over 4M molecules was used as the
virtual library. (A-C) Protein-ligand interactions of M4 with IGF1R, EGFR, and CYP3A4
prepared with PLIP.%® (D-F) Space-filling visualization of M4 in the binding pockets of
IGF1R, EGFR, and CYP3A4. The docking-based optimization for predicted selectivity fa-
vors bulky molecules like M4 that can fit in the binding pockets of targets IGF1R and EGFR
but form unresolvable steric clashes with residues that form the pocket of off-target CYP3A4.
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Figure S6: Molecules 0-15 of the 39 non-dominated molecules for an exemplary 3-objective
optimization aiming to identify binders of IGF1R and EGFR with selectivity over CYP3A4
from the Enamine screening library of over 4M molecules.®” Docking scores were computed
using DOCKSTRING.5! Docking scores to IGF1R and EGFR were minimized, and scores
to the off-target CYP3A4 were maximized.
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Figure S7: Molecules 16-31 of the 39 non-dominated molecules in the searched library for
an exemplary 3-objective optimization aiming to identify binders of IGF1R and EGFR with
selectivity over CYP3A4 from the Enamine screening library of over 4M molecules. 5" Docking
scores were computed using DOCKSTRING.S! Docking scores to IGF1R and EGFR were
minimized, and scores to the off-target CYP3A4 were maximized.
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Figure S8: Molecules 32-38 of the 39 non-dominated molecules in the searched library for
an exemplary 3-objective optimization aiming to identify binders of IGF1R and EGFR with
selectivity over CYP3A4 from the Enamine screening library of over 4M molecules.5” Docking
scores were computed using DOCKSTRING.5! Docking scores to IGF1R and EGFR. were

minimized, and scores to the off-target CYP3A4 were maximized.

S-11




S6 Tables

Table S1: Fraction of top-1% acquired across iterations for retrospective multi-objective
virtual screening experiments in Section 3.2, shown in Figure 4. A comparison with MO-
MEMES® is also included. All cases minimized docking scores to one target and maximized
docking scores to one off-target.
inhibitors of DRD3 over DRD2, JAK2 over LCK, and IGF1R over CYP3A4, respectively.
Docking scores to all targets were extracted from from the published DOCKSTRING dataset
of 260k molecules.5! 1% of the virtual library was acquired at each iteration using top-k
batching. Means £ one standard deviation across 5 trials are shown.

Cases 1, 2, and 3 aimed to identify putative selective

Case  Acquisition Tteration
Function 0 1 2 3 4 5 6
1 EHI 0.01 £0.00 0.15+0.01 0.21+0.03 0.25+0.03 0.30+0.02 0.33+0.02 0.36 &+ 0.02
1 EI 0.01+£0.00 0.14+0.02 0.17£0.02 0.204+0.02 0.234+0.02 0.25+0.02 0.27+0.02
1 Greedy 0.01 +£0.00 0.17£0.01 0.25+0.01 0.314+0.02 0.36£0.01 0.41+0.01 0.454+0.01
1 MO-MEMES 0.014+0.00 0.094+0.02 0.114+0.02 0.13+0.02 0.15+0.02 0.18+0.02 0.19+0.01
1 NDS 0.01+0.00 0.16£0.02 0.25+0.01 0.304+0.01 0.34+0.01 0.37+0.01 0.404+0.01
1 PHI 0.01+0.00 0.17£0.01 0.25+0.02 0.314+0.02 0.36£0.02 0.40+0.01 0.434+0.01
1 PI 0.01+£0.00 0.14+0.02 0.18£0.02 0.214+0.01 0.244+0.02 0.27+0.02 0.29+0.02
1 Random 0.01 £0.00 0.02+£0.00 0.03+0.00 0.044+0.00 0.05+0.01 0.06+0.01 0.0740.01
2 EHI 0.01+0.00 0.13+£0.04 0.15+0.04 0.174+0.03 0.20£0.03 0.23+0.04 0.254+0.04
2 EI 0.01 £0.00 0.03+0.00 0.03+0.00 0.04=+0.00 0.05+0.00 0.07=+0.00 0.08+0.00
2 Greedy 0.01+£0.00 0.09+£0.03 0.13+0.03 0.164+0.04 0.20£0.04 0.22+0.04 0.254+0.04
2 MO-MEMES 0.01+0.00 0.02+0.00 0.034+0.00 0.054+0.00 0.064+0.00 0.074+0.00 0.07+0.01
2 NDS 0.01+0.00 0.13£0.01 0.21+0.01 0.264+0.01 0.29+£0.01 0.32+0.01 0.344+0.01
2 PHI 0.01 £0.00 0.1840.02 0.214+0.02 0.25+£0.02 0.28+£0.01 0.314+0.00 0.35=+0.02
2 PI 0.01 £0.00 0.03+0.00 0.04=+0.00 0.05+0.00 0.06=+0.00 0.07=+0.01 0.08+0.00
2 Random 0.01 £0.00 0.02+0.00 0.03+0.00 0.04=+0.00 0.05+0.00 0.06=+0.00 0.07=+0.00
3 EHI 0.01 +0.00 0.04£0.01 0.06+0.01 0.114+0.01 0.17£0.02 0.23+£0.01 0.26 +0.01
3 EI 0.01£0.00 0.03+£0.01 0.04£0.01 0.054+0.01 0.064+0.01 0.08+0.01 0.09+0.01
3 Greedy 0.01 £0.00 0.034+0.00 0.064+0.00 0.08+0.00 0.11+£0.01 0.134£0.01 0.154+0.01
3 MO-MEMES 0.01£0.00 0.02+0.00 0.03+0.00 0.05=+0.00 0.06=+0.00 0.08=+0.00 0.10+0.00
3 NDS 0.01 +0.00 0.05+£0.01 0.08+0.00 0.124+0.01 0.15£0.01 0.17+£0.01 0.194+0.01
3 PHI 0.01 £0.00 0.03£0.01 0.07+0.02 0.114+0.03 0.17£0.04 0.244+0.04 0.284+0.03
3 PI 0.01+£0.00 0.03+£0.01 0.04+0.01 0.054+0.01 0.06+0.01 0.07+0.00 0.09+0.00
3 Random 0.01£0.00 0.02+£0.00 0.03£0.00 0.0440.00 0.054+0.00 0.06=+0.00 0.07=+£0.00
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Table S2: Hypervolume profiles for retrospective multi-objective virtual screening experi-
ments in Section 3.2, shown in Figure S2. A comparison with MO-MEMES® is also in-
cluded. 1% of the virtual library was acquired at each iteration using top-k batching. Means
+ one standard deviation across 5 trials are shown.

Case  Acquisition Iteration
Function 0 1 2 3 4 5 6
1 EHI 0.82+0.01 0.90+£0.02 0.934+0.03 0.94+0.03 0.96+£0.03 0.974+0.03 0.98+0.02
1 EI 0.82+0.01 0.91+0.01 0.934+0.03 0.94+0.03 0.95+0.04 0.954+0.04 0.95+0.03
1 Greedy 0.82+0.01 0.90+0.01 0.914+0.00 0.924+0.00 0.92+0.00 0.924+0.00 0.92+0.00
1 MO-MEMES 0.82+0.01 0.894+0.02 0.90+0.02 0.91+0.01 0.934+0.01 0.95+0.03 0.96+0.03
1 NDS 0.82+0.01 0.91+0.00 0.954+0.00 0.95+0.00 0.95+0.00 0.954+0.00 0.95=+0.00
1 PHI 0.82+0.01 0.88+£0.02 0.904+0.01 0.924+0.00 0.92+£0.00 0.934+0.01 0.94+0.02
1 PI 0.82+0.01 0.91+0.01 0.934+0.03 0.94+0.03 0.94+0.03 0.954+0.03 0.96+0.03
1 Random 0.82+0.01 0.84+0.02 0.87+0.02 0.87+0.02 0.88+0.02 0.89+0.02 0.89+0.01
2 EHI 0.84+0.01 0.93+0.03 0.974+0.00 0.98+0.00 0.98+0.00 0.994+0.00 0.99+0.00
2 EI 0.84+0.01 0.94+0.01 0954+0.01 0.95+0.01 0.95+0.01 0.95+0.01 0.96+0.01
2 Greedy 0.84+0.01 0.95+0.03 0.984+0.00 0.98+0.01 0.98+0.01 0.984+0.01 0.98+0.00
2 MO-MEMES 0.84+0.02 0.88+0.01 0.914+0.02 0.95+0.01 0.96+0.00 0.9640.00 0.96 =+ 0.00
2 NDS 0.84+0.01 0.97+0.01 0.98+0.00 0.994+0.00 0.99+0.00 0.994+0.00 0.99+0.00
2 PHI 0.84+0.01 0.89+0.03 0.954+0.04 0.98+0.00 0.99+0.00 0.994+0.00 0.99+0.00
2 PI 0.84+0.01 0.94+0.01 0954+0.01 0.95+0.01 0.95+0.01 0.96+0.01 0.96+0.01
2 Random 0.84+0.01 0.86+0.01 0.894+0.02 0.89+0.01 0.90+0.02 0.90+0.01 0.91+0.01
3 EHI 0.724+0.09 0.83+0.07 0.95+0.03 0.964+0.03 0.99+0.01 0.99+0.01 1.00+0.01
3 EI 0.72+0.09 0.87+0.05 0.934+0.03 0.97+0.01 0.98+0.00 0.994+0.00 0.99+0.00
3 Greedy 0.72+0.09 0.82+0.01 0.824+0.01 0.83+0.01 0.83+0.01 0.83+0.01 0.83+0.01
3 MO-MEMES 0.724+0.09 0.91+0.12 0.984+0.00 0.98+0.00 0.99+0.00 0.9940.00 1.00+0.00
3 NDS 0.72+0.09 0.87+0.01 0.874+0.01 0.88+0.00 0.89+0.01 0.89+0.01 0.89+0.01
3 PHI 0.72+0.09 0.81+£0.07 0.86+0.10 0.90+0.11 0.97+£0.03 0.974+0.03 0.98+0.03
3 PI 0.72+0.09 0.87+0.05 0.934+0.03 0.96+0.02 0.98+0.01 0.994+0.00 0.99+0.00
3 Random 0.72+0.09 0.80+0.12 0.824+0.13 0.88+0.10 0.91+0.05 0.924+0.05 0.93+0.04
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Table S3: Comparison of acquisition functions (including against MO-MEMES®?) using all
four evaluation metrics after a fixed exploration budget of 6 iterations. Top-1%, hypervol-
ume (HV), inverted generational distance (IGD), and fraction of the true Pareto front are
shown. Values are plotted in Figures 4, 5, and S2. All cases minimized docking scores to
one target and maximized docking scores to one off-target. Cases 1, 2, and 3 aimed to iden-
tify putative selective inhibitors of DRD3 over DRD2, JAK2 over LCK, and IGF1R over
CYP3A4, respectively. Docking scores to all targets were extracted from from the published
DOCKSTRING dataset of 260k molecules.®! 1% of the virtual library was acquired at each
iteration using top-k batching. Means + one standard deviation across 5 trials are shown.

Case Acquisition Function — Top 1% HV IGD Fraction of True Front
1 EHI 0.36 £0.02 0.984+0.02 0.11+0.06 0.68 + 0.05
1 EI 0.27+0.02 0.95+0.03 0.22+0.12 0.52 + 0.06
1 Greedy 0.45+0.01 0.924+0.00 0.33£0.01 0.51 +0.02
1 MO-MEMES 0.19£0.01 0.964£0.03 0.28+0.12 0.40 £ 0.08
1 NDS 0.404£0.01 0.954+0.00 0.20=+£0.01 0.49 £ 0.04
1 PHI 0.43+0.01 0.944+£0.02 0.23+0.06 0.61 +0.03
1 PI 0.29+0.02 0.96+0.03 0.21+0.11 0.53 +0.07
1 Random 0.07+0.01 0.89+0.01 0.6240.04 0.09 £0.04
2 EHI 0.25+0.04 0.994+0.00 0.10£0.01 0.41+0.03
2 EI 0.08+0.00 0.96 +0.01 0.28 +0.03 0.20 + 0.05
2 Greedy 0.25+0.04 0.98+0.00 0.10+0.02 0.38 +0.05
2 MO-MEMES 0.07£0.01 0.96 £0.00 0.26 +0.02 0.19 +0.05
2 NDS 0.34+0.01 0.99+0.00 0.07+0.02 0.48 + 0.05
2 PHI 0.35+0.02 0.99+0.00 0.08+0.01 0.47 +0.03
2 PI 0.08+0.00 0.964+0.01 0.28+0.01 0.21 £0.03
2 Random 0.07+0.00 0.914+0.01 0.314+0.03 0.03 +0.03
3 EHI 0.26 £0.01 1.00£0.01 0.07+0.07 0.82 4+ 0.10
3 EI 0.09+0.01 0.99+0.00 0.18+0.07 0.62 +£0.10
3 Greedy 0.154+0.01 0.834+0.01 1.2540.09 0.02 +£0.04
3 MO-MEMES 0.10£0.00 1.00£0.00 0.2040.04 0.64 + 0.05
3 NDS 0.194+0.01 0.89+0.01 0.7440.03 0.24 +£0.08
3 PHI 0.284+0.03 0.984+0.03 0.19+0.15 0.72£0.15
3 PI 0.09+0.00 0.99 +0.00 0.21 +0.08 0.60 +0.11
3 Random 0.07£0.00 0.93+0.04 0.76 +0.22 0.16 £0.12
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Table S4: Top-1% and hypervolume profiles for Case 3 experiments comparing diversity-
enhancing acquisition strategies (Section 3.3, Figure 6). All runs used PHI for acquisition.
Results are shown for top-k batching without clustering and three diversity-enhanced acquisi-
tion strategies that apply clustering. Docking scores to IGF1R and CYP3A4 were minimized
and maximized, respectively. The virtual library and docking scores were use as published
in DOCKSTRING.5! 1% of the virtual library was acquired at each iteration using top-k
batching. Means 4+ one standard deviation across 5 trials are shown.

Top-1%
Cluster Iteration
Type 0 1 2 3 4 5 6
Feature 0.01+£0.00 0.04+0.01 0.084+0.02 0.124+0.02 0.16+0.02 0.19+0.02 0.23+0.02
Feature + Obj 0.01£0.00 0.04+0.01 0.074+0.01 0.12+£0.02 0.16+0.02 0.204+0.02 0.24 +0.02
No clustering 0.01 +£0.00 0.03+0.01 0.074+0.02 0.114+0.03 0.17+0.04 0.24+0.04 0.28+0.03
Obj 0.01+0.00 0.03+0.00 0.05+0.01 0.094+0.01 0.134+0.01 0.174+0.01 0.20+0.01
Hypervolume
Cluster Iteration
Type 0 1 2 3 4 5 6
Feature 0.72+0.09 0.8 +0.07 097+0.01 0.974+0.01 0.984+0.01 0.98+0.01 0.99+0.01
Feature + Obj 0.72+£0.09 0.87+0.04 0.934+0.04 0.96£0.04 0.98+0.02 1.004+0.00 1.00=+0.00
No clustering 0.724+0.09 0.81 £0.07 0.86+0.10 0.90+0.11 0.974+0.03 0.97+0.03 0.98+0.03
Obj 0.72+0.09 0.85+£0.06 0.94+£0.03 0.96+0.04 0.98+0.01 0.99+0.01 0.99+0.01

Table S5: Comparison of diversity-enhancing acquisition strategies using all four evaluation
metrics after a fixed exploration budget of 6 iterations (Section 3.3, Figure 6). All runs
used PHI for acquisition. Results are shown for top-k batching without clustering and three
diversity-enhanced acquisition strategies that apply clustering. Docking scores to IGF1R
and CYP3A4 were minimized and maximized, respectively. The virtual library and docking
scores were use as published in DOCKSTRING.5! 1% of the virtual library was acquired
at each iteration using top-k batching. Means + one standard deviation across 5 trials are
shown.

Cluster Fraction of  Number of
Top 1 H |
Type op 1% ypetvotuine IGD True Front Scaffolds
Feature 0.23 +0.02 0.99 4+ 0.01 0.26 +£0.08 0.58 £0.07 10605 &4 146
Feature + Obj 0.24 £ 0.02 1.00 £ 0.00 0.094+0.05 0.84+0.00 98514+ 49
No clustering  0.28 + 0.03 0.98 +0.03 0.194+0.15 0.72+£0.15 7946 4 186
Obj 0.20 £ 0.01 0.99 +0.01 0.254+0.08 0.64+£0.16 9036 4 198
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