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Generation of ab initio training data

System description

Reference data was extracted from ab initio molecular dynamics (AIMD) simulations. We

considered four AIMD trajectories of 50 ps each performed in the (N, V, T ) ensemble of ZIF-4

liquids at four volumes and temperatures of either 1500K or 1750K, as reported in Table S1.

Table S1: Temperature of the 50 ps liquid trajectories generated per strain.

Volume change (%) 2 0 -2 -4
Temperature (K) 1500 1500 1750 1750

While (N, V, T ) simulations are an efficient way to generate training data at high tem-

perature, we ambition to develop an MLP that could also be used for (N,P, T ) simulations,

which therefore requires to an accurate reproduction of the stress. An option is to learn from

structures simulated at different volumes, by applying deformation to the initial cell of the

crystal. We found that it led to better predictions of mechanical properties than the use of

a single trajectory without deformation.

We created four (N, V, T ) trajectories at 300K with different deformations. Successive

simulations at different volumes were performed, consisting in an instantaneous and isotropic

volume change by 2% from the previous volume, followed by an equilibration time larger than

10 ps. These trajectories were taken from a previous work.1 The final volume deformations

were {2%, 0%,−2%,−4%}

Once the 300K crystal models at various volumes were prepared, they were heated up

to obtain high temperature trajectories, that should preferably simulate liquid systems. The

0% trajectory was taken from the work by Gaillac et al.,2 and the other ones were first

simulated for this work. The choice of the high temperature value is a trade-off between the

need to gather statistics on relatively rare events, and the necessity to preserve the physical

consistency of the model. Previous ab initio MD simulations of the liquid ZIF-4 have been

performed up to 2000K while preserving the integrity of the imidazolate linkers.2 Previous
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work on the melting of ZIFs2,3 also showed that a duration of 50 ps is often sufficient to

observe melting. We therefore ran multiple (N, V, T ) trajectories first at 1500K, and then at

1750K if melting was not observed at 1500K. Each (N, V, T ) trajectory was long enough to

include 50 ps of liquid.

Detecting liquids

As discussed in,4 detecting melting is insightful but not straightforward. If a trajectory is

sufficiently long, it is possible to identify melting by spotlighting a loss in coordination as

Table S2 or a change in the behavior of the MSD as in Figure S1a.

As a complement, ring statistics can provide clear evidence of the onset of the melting

transition. By monitoring the number of rings of different sizes as the function of time, as

shown on Figure S1b, one can easily identify a transition from the ring statistics of the

crystal towards a less ordered system. This had not been used before, but we think it is a

powerful descriptor to detect melting.

The choice of the temperature required to observe melting is not straightforward, as we

found that it could depend on the deformation. Table S2 and Figure S1a provide evidence

that systems with volume deformations of 0% and 2% ended up melting after a few tens of

picoseconds at 1500K, while −2% and −4% did not.

Table S2: Coordination numbers for nitrogen atoms around the zinc cation for
1500 K MD trajectories of ZIF-4 with various deformations. Computed over the
last 10 ps of each trajectory.

Volume change (%) -4 -2 0 2
Average Zn-N coordination number 3.84 3.76 3.59 3.64

S3



0 5 10 15 20 25
Time (ps)

0

5

10

Z
n
 M

S
D

 (
Å

2
) Volume change

-4 %

-2 %

0 %

2 %

0 10 20 30 40 50 60
Time (ps)

0.0

0.2

0.4

0.6

N
u
m

b
e
r 

o
f 

ri
n
g
s/

ce
ll 

(n
o
rm

a
liz

e
d
)

Ring size

8

10

12

14

16

18

20

22

(a)

(b)

Figure S1: Evidence of melting during 1500K MD trajectories of ZIF-4. (a) Mean square
displacement (MSD) as a function of time for Zn with various deformations. (b) Number of
zinc–imidazolate alternate rings of different sizes as the function of time for the trajectory
with a deformation of 2%. For clarity, only rings of size comprised between 8 and 22 are
shown.
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Training NequIP MLPs

Accurately training for stress

Several loss functions were used to simultaneously minimize the errors on the energy (E),

forces ({F i}) and stress (σ). The respective contribution of each error in the total loss

functions are parameterized by three weights λF , λE, λσ.

For some MLPs we wanted to bias learning for stress by choosing large λσ instead of

λσ = 0. We tested λσ ∈ {0, 1, 10, 100, 1000} at different stage of development. Here we

report the final MLP parameterization, only differing by the value of λσ ∈ {0, 1, 100}.

On Table S3, we see that energies and forces are well learned in every case, and any

actual learning of the stress occurs only for (λσ = 100). We found satisfying final mean

absolute errors (MAE) on energy and forces reported in Table S3, compared to previous

NequIP works on liquid systems5 and MOFs.6

Table S3: MAEs of the trained models for λσ ∈ {0, 1, 100}, evaluated on unseen
frames of the liquid trajectories.

λσ 0 1 100
Energy MAE (meV/atom) 0.56 0.71 1.7

Forces MAE (meV Å
−1
) 15.1 15.2 16.0

Stress MAE (MPa) 360 300 140

However, Figure S2 clearly evidences that the pressure outputs were singularly different

depending on whether the loss function is biased for stress. Strongly biased systems displayed

pressure ranges located far from the state of zero pressure, resulting in the extremely low

values for the fitted ρ0 reported in Table S4. On the contrary, the unbiased MLP led to

K and ρ0 values in line with each other and with previous AIMD results. It suggests that

training MLPs on energy and forces only is sufficient to reproduce the mechanical properties

with reasonable accuracy. We therefore chose (λσ = 0) for the production MLP.
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Figure S2: Pressure as the function of volume for the ZIF-4 crystal obtained by the finite
strain difference method with multiple λσ

Table S4: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal
obtained with the finite strain difference method with multiple λσ.

λσ 0 1 100
K (GPa) 1.69 1.62 0.80

ρ0 (g cm−3) 1.16 1.06 0.75
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MD simulations with NequIP

Table S5: Coordination numbers for nitrogen atoms around the zinc cation for
different ZIF-4 phases with the NequIP MLP compared to AIMD.

Crystal Liquid ab initio glass
MLP 4.00 3.67 3.94

AIMD 4.00 3.52 3.93

Table S6: Total porous volume (in cm3 kg−1) for different ZIF-4 phases with the
NequIP MLP compared to AIMD.

Crystal Liquid ab initio glass
MLP 53.0 60.2 67.0

AIMD 53.6 52.4 68.1
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Figure S3: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for
the Zn–N atom pairs, and (c) distribution of the N–Zn–N angle for the ZIF-4 ab initio glasses
with the NequIP MLP compared to AIMD.
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Figure S4: Evidence of melting and glass generation. (a) Mean square displacement (MSD)
as a function of time for Zn during the 1500K plateau. (b) Zn–N coordination number as
the function of time with the final value for the glass system distinct from that of the initial
crystal.
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Figure S5: Radial distribution functions (RDF) for the Zn–Zn atom pairs of the MLP glass
(blue), ab initio glass (orange) and ab initio crystal (red).
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Figure S6: Total porous volume of the MLP glass (blue), ab initio glass (orange) and ab
initio crystal (red).
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Figure S7: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for
the Zn–N atom pairs, and (c) distribution of the N–Zn–N angle for the ZIF-4 the MLP
NequIP glass with different system sizes. The single cell properties are averaged over ten
glasses.
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Mechanical properties with NequIP

System description and methodological details

Finite strain difference method

System description and preparation Eleven systems were prepared following a simpli-

fied preparation procedure:

• The same crystallographic model of the crystal used for the ab initio simulation of the

crystal.2,7

• The ten ab initio glasses obtained from the work by Gaillac et al.,7 three of them

having been studied with AIMD in a previous work.1 Properties (K and ρ0) reported

in the article are averaged over the ten glasses.

This preparation procedure consisted in an initial energy minimization, followed by an

(N, V, T ) run at 300K for 100 ps with the default temperature damping parameter.

Ten MLP glasses were produced through the same melt-quenching procedure than pre-

sented in the main article. The only differences concern the system size (single cell instead

of (2× 2× 2) supercell) and the time spent at the maximal temperature tmax. For each glass

indexed by i ∈ {1, 2, ..., 10}, tmax = 50+20× i (expressed in ps). We checked that every tmax

was large enough for the crystal to melt. Figure S7 shows that the structural properties are

similar, although not identical, between the single cell and (2× 2× 2) supercell glasses.

Methodological details Successive simulations at different volumes were applied, con-

sisting of a volume deformation by 1.5% and lasting 100 ps from the previous volume followed

by an equilibration time of 100 ps. Volume deformation in the (N, V, T ) ensemble was a con-

tinuous process, during which each dimension of the box changed linearly with time from its

initial to final value to achieve a volume reduction by 1.5%.

The value of the pressure for a given volume was taken as the average over the last 100 ps

of the simulation.
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The well-behaved region of the P − V data for the fit with the second order Birch-

Murnaghan EoS was selected to have 5 points at maximum and to include if possible the

region of zero pressure. 5 points were found for the crystal, 4.6± 0.5 for the ab initio glasses

and 4.6± 0.7 for the MLP glasses.

Strain-fluctuation method

System description For the strain-fluctuation method, the initial systems for the finite

strain difference method were taken and were further equilibrated in the (N,P, T ) ensemble

with a flexible cell until convergence of the elastic constants. This methods was applied for

the crystal and the ten ab initio glasses.

The equilibration time teq is of 5 ns for the crystal and 7.5 ns for the ab initio glasses.

Methodological details The elastic constants, the volume fluctuations and the volumes

were computed over the last 4.5 ns for the crystal and 4.35± 0.32 ps for the ab initio glasses.
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Supplementary figures and tables
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Figure S8: Finite strain difference method for the crystal with the NequIP MLP. (a) Pressure
as a function of time for different deformations, shown with a moving average over 5 ps.
(b) Pressure as a function of volume fitted with the second order Birch-Murnaghan EoS
(red). Each volume corresponds to a (N, V, T ) simulation with fixed deformation. Pressure
is computed as the average over the last 100 ps of simulations. Error bars are the standard
deviations of the pressure averaged with a rolling window of 10 ps.
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Table S7: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal
obtained with the finite strain difference method with NequIP MLP and different
supercells. Calculations with the (2× 2× 2) supercell were performed with the
shorter deformation and equilibration times of 50 ps, which were sufficient to
witness pressure equilibration.

Single cell
(2× 2× 2)
supercell

K (GPa) 1.69 1.67
ρ0 (g cm−3) 1.16 1.16

1 2 3 4 5
Time (ns)

4200

4400

4600

4800

5000

Vo
lu

m
e 

(Å
3 )

Figure S9: Volume as a function of time during a long 5 ns equilibration in the (N,P, T )
ensemble with a flexible cell for the crystal with the NequIP MLP. Elastic constants were
computed on the red part of the figure. The orange line shows a moving average over 100 ps.

Table S8: Bulk modulus K and density at zero pressure ρ0 for ZIF-4 crystal and
ab initio glasses obtained with two strain-fluctuation methods with the NequIP
MLP.

Crystal ab initio glass

K - volume fluctuations (GPa) 1.59 2.44 ± 1.02

K - elastic constants (GPa) 1.58 2.72 ± 0.97

ρ0 (g cm−3) 1.15 1.30 ± 0.09
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Figure S10: (a) Convergence of the elastic constants Ci,j as function of time for the crystal
with the NequIP MLP during a long 5 ns equilibration in the (N,P, T ) ensemble with a flex-
ible cell. (b) At time t, the represented Ci,j(t) corresponds to the elastic constant computed
from the 2 ns to (t + 2) ns part of the trajectory. The Ci,j used for the computation of the
mechanical properties thus correspond to the final t = 3ns.
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Allegro MLPs

Training

We conducted experiments starting with the same parameters as the production NequIP

model, varying only a number of parameters.

The parameters that were preserved include:

– Cutoff radius Rc: 6 Å

– Maximum rotation order l : 2

– Early stopping lower bounds: Learning Rate (LR): 1.0× 10−6

The parameters that were varied include:

– The loss coefficient for stress λσ, set to either 0 or 100

– The parity (parity) options: o3 full, o3 restricted, and so3. (The available par-

ity options differ from NequIP and exclude the false option, so we tested all three

provided options.)

– The number of layers (num layers): 1, 2, 3

– The learning rate (learning rate): 0.0005, 0.001, 0.002. (This range of values differs

from Allegro compared to NequIP as suggested by the developers.)

Regarding the observations from experiments with varied parameters: The training time

is primarily influenced by the number of layers (num layers). For the same result with

num layers=2, o3 full yields slightly better or identical results compared to o3 restricted.

As o3 full requires only 2% more computing time than o3 restricted, it is therefore

preferable to retain o3 full. Increasing num layers from 2 to 3 doesn’t lead to a significant

improvement; instead, it often results in overfitting as indicated by a further reduction in

training loss without a corresponding improvement in validation loss. Both num layers=2

and num layers=3 outperform num layers=1. Regarding the impact of the learning rate,

there are no significant alterations in the final values observed in the validation dataset.

S17



The chosen parameters are therefore:

– Stress coefficient λσ: 0 (same as the NequIP MLP)

– Number of layers: 2 (same as the NequIP MLP)

– Parity option: o3 full

– Learning rate: 0.001
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Figure S11: (a) Training and (b) validation loss functions and mean absolute errors (MAE)
for (c) energy E and (d) forces {F i} as the function of epoch for the Allegro MLP compared
to NequIP.
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MD simulations
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Figure S12: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF)
for the Zn–N atom pairs, and (c) distribution of the N–Zn–N angle for the ZIF-4 liquid at
1500K with Allegro MLP compared to NequIP MLP and AIMD. While the average structural
properties are identical, the physical consistency of all imidazolate linkers is not maintained
with the Allegro MLP.
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Figure S13: Identification of melting during 300 ps high temperature trajectories with the
Allegro MLP. (a) Mean square displacement (MSD) as a function of time for Zn. (b) Zn–N
coordination number as the function of time. The use of ring statistics to identify melting is
not feasible due to the presence of broken imidazolate.
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Figure S14: Proportion of broken imidazolate cycles (Im) as a function of time during 300 ps
high temperature trajectories with the Allegro MLP. Detected with the Python library amof.4
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Figure S15: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for
the Zn–N atom pairs, and (c) distribution of the N–Zn–N angle for melt-quenched glasses
obtained with Allegro (red), NequIP (orange) and AIMD (blue).
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Figure S16: Distributions of size of zinc–imidazolate alternate rings for melt-quenched glasses
obtained with Allegro (red), NequIP (orange) and AIMD (blue). The physical consistency of
all imidazolate linkers was not maintained through the entire melt-quenching simulations.
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Figure S17: (a) Radial distribution functions (RDF), (b) potentials of mean force (PMF) for
the Zn–N atom pairs, and (c) distribution of the N–Zn–N angle for the ZIF-4 crystal (left)
and 1500K liquid (right) with the Allegro MLP and different supercells compared to AIMD.
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