Supporting Information

for

N^N vs *N^E* (E = S or Se) Coordination Behavior of Imino-Phosphanamidinate Chalcogenide Ligands towards Aluminum Alkyls. Efficient Hydroboration Catalysis of Nitriles, Alkynes, and Alkenes

Himadri Karmakar,^a Ravi Kumar,^a Jyoti Sharma,^a Jayanta Bag,^b Kuntal Pal,^b Vadapalli Chandrasekhar*,^{c,d} and Tarun K. Panda^{*a}

Table of Contents

- 1. X-ray crystallographic analyses
 - (i) Table T1. Crystallographic data and refinement parameters of 2a-H, 2b-H, 3a-H, 3b-H, 4a-H and 4b-H.
 - (ii) Table T2. Crystallographic data and refinement parameters of 5a, 5b, 6a, 6b, and 7b.
- 2. Solid state structures of 2b-H, 3a-H, 3b-H, 4a-H, 4b-H, 5a, 6a, 6b, 7a and 7b.
- 3. NMR spectra of ligands 2a-H, 2b-H, 3a-H, 3b-H, 4a-H and 4b-H.
- 4. NMR spectra of metal complexes 5a, 5b, 6a, 6b, 7a and 7b.
- 5. Catalytic hydroboration of nitriles.
- 6. Catalytic hydroboration of alkynes.
- 7. Catalytic hydroboration of alkenes.
- 8. NMR spectra of hydroboration products.
- 9. Stoichiometric reaction between complex **5b** and pinacolborane.
- 10. Selective hydroboration of carbonyl group over nitrile functionality in presence of one equivalent HBpin
- 11. Competitive hydroboration of alkyne and nitrile group in presence of 2 equivalents of HBpin
- 12. Competitive hydroboration of alkyne and alkene group in presence of 1 equivalent of HBpin
- 13. References.

1. X-ray crystallographic analyses: Single crystals of complexes 2a-H, 2b-H, 3a-H, 3b-H, 4a-H and 4b-H were obtained from a concentrated solution of toluene in an argon-filled atmosphere at -35 °C. However, single crystals of 5a, 5b, 7a, and 7b were obtained from a toluene/hexane mixture (1:1) solution at -35 °C, whereas 6a, 6b was crystallized from THF/hexane mixture (1:1) solution at room temperature. In each case, a crystal of suitable dimensions was mounted on a CryoLoop (Hampton Research Corp) with a layer of light mineral oil. All measurements were made on a Bruker SCXRD D8 VENTURE or an Rigaku Supernova X-calibur Eos CCD detector with graphite monochromatic Mo-Ka (0.71073 Å) radiation. Crystal data and structure refinement parameters are summarized in Table TS1 and TS2. The structures were solved by direct methods (SIR2004) and refined on F^2 by full-matrix least-squares methods, using SHELXL-97.¹ Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement on calculated positions riding on their carrier atoms. The ORTEP-3² program was used to draw the molecule with 30% probability displacement ellipsoids and H atoms omitted for clarity. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2221974 - 2221983 and 2221985. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: + (44)1223-336-033; email: deposit@ccdc.cam.ac.uk).

Crystal parameters	2a-H	2b-H	3а-Н
CCDC NO.	2221974	2221975	2221976
Empirical formula	C45H59N4PS	C45H59N4Pse	C ₃₉ H ₄₇ N ₄ PS
Formula weight	719.03	765.89	634.83
<i>T</i> (K)	250(10)	293(2)	273.15
λ (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic	Triclinic
Space group	Pbca	<i>P</i> 2 ₁ /c	<i>P</i> -1
a (Å)	16.2250(6)	14.0131(6)	8.446(6)
b (Å)	24.0393(10)	16.1376(7)	12.251(9)
<i>c</i> (Å)	25.4474(10)	22.0541(10)	18.836(15)

6	i)	T1 .	Cr	vstal	llogra	aphic	data	and	refin	ement	paramete	ers of	2a-	H.	2b-H	and	3a-	H.
v	-,	•	· · ·	,		·p ·····					paramete						•••	

α (°)	90	90	94.52(3)
β (°)	90	101.734(4)	100.34(2)
γ (°)	90	90	105.00(3)
$V(Å^3)$	9925.4(7)	4883.0(4)	1836(2)
Ζ	8	4	2
$D_{\text{calc}} (\text{g cm}^{-3})$	0.962	1.042	1.148
$\mu (\mathrm{mm}^{-1})$	0.127	0.832	0.163
F(000)	3104.0	1624	680
Theta range for data collection	2.648 to 29.057 deg.	2.524 to 28.966 deg.	2.18 to 27.102 deg.
Limiting indices	$-21 \le h \le 22,$	$-18 \le h \le 18,$	$-10 \le h \le 10$,
	$-24 \le k \le 32$,	$-21 \le k \le 21$,	$-15 \le k \le 15$,
	$-31 \le 1 \le 34$	$-25 \le l \le 29$	$-22 \le l \le 24$
Reflections collected / unique	138337 / 12256 [R(int) =	47830 / 11293 [R(int)	27080 / 7717 [R(int)
	0.0652]	= 0.0677]	= 0.0633]
Completeness of theta	99.76 %	99.51 %	95 %
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	1.00000 and 0.06282	1.00000 and 0.78383	1.00000 and 0.82770
Refinement method	Full-matrix least-squares	Full-matrix least-	Full-matrix least-
	on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	12256 / 31 / 585	11293 / 1 / 468	7717 / 0 / 422
Goodness-of-fit on F ²	1.043	1.073	1.023
Final R indices [I>2Sigma(I)]	$R_1 = 0.0687, wR_2 = 0.1866$	$R_1 = 0.0458, wR_2 =$	$R_1 = 0.0667, wR_2 =$
		0.1216	0.1540
R indices (all data)	$R_1 = 0.1071, wR_2 = 0.2028$	$R_1 = 0.0790, wR_2 =$	$R_1 = 0.1298, wR_2 =$
		0.1337	0.1821

Crystal parameters	3b-Н	4a-H	4b-H
CCDC NO.	2221977	2221978	2221979
Empirical formula	C ₃₉ H ₄₇ N ₄ PSe	C ₂₉ H ₄₃ N ₄ PS	C ₂₉ H ₄₃ N ₄ PSe
Formula weight	681.77	510.72	557.60
Т(К)	293(2)	273.15	249.99(10)
λ (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	$P2_1/n$	<i>P</i> 2 ₁ /n
<i>a</i> (Å)	8.5632(2)	13.8855(6)	13.9301(5)
<i>b</i> (Å)	12.1933(3)	15.1007(6)	15.0618(6)
<i>c</i> (Å)	18.6985(4)	14.1929(7)	14.1789(6)
α (°)	94.188(2)	90	90
β (°)	101.343(2)	92.918(2)	93.560(4)
γ (°)	104.459(2)	90	90
$V(Å^3)$	1838.21(8)	2972.1(2)	2969.2(2)
Ζ	2	4	4
$D_{\text{calc}} (\text{g cm}^{-3})$	1.232	1.137	1.247
$\mu (\mathrm{mm}^{-1})$	1.096	0.186	1.342
F(000)	716	1096	1176
Theta range for data collection	2.519 to 28.89 deg.	1.971 to 27.13 deg.	2.705 to 28.881 deg.
Limiting indices	$-10 \le h \le 11$,	$-17 \le h \le 17$,	$-18 \le h \le 18$,
	$-15 \le k \le 15,$	$-19 \le k \le 17$,	$-19 \le k \le 19$,
	$-24 \le l \le 23$	$-18 \le l \le 18$	$-19 \le 1 \le 15$
Reflections collected / unique	34496 / 8478 [R(int) =	43812 / 6564 [R(int) =	35067 / 7018 [R(int) =
	0.0702]	0.0551]	0.0757]
Completeness of theta	99.51 %	99.13 %	99.62 %
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	1.00000 and 0.69716	1.00000 and 0.82770	1.00000 and 0.28231
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	8478 / 1 / 426	6564 / 13 / 336	7018 / 39 / 343

(i) T1. (contd). Crystallographic data and refinement parameters of 3b-H, 4a-H and 4b-H.

Goodness-of-fit on F ²	1.037	1.039	1.093
Final R indices [I>2Sigma(I)]	$R_1 = 0.0502, wR_2 =$	$R_1 = 0.0598, wR_2 =$	$R_1 = 0.0609, wR_2 =$
	0.1069	0.1493	0.1103
R indices (all data)	$R_1 = 0.0820, wR_2 =$	$R_1 = 0.0906, wR_2 =$	$R_1 = 0.1092, wR_2 =$
	0.1150	0.1666	0.1207

(ii) T2. Crystallographic data and refinement parameters of 5a, 5b and 6a.

Crystal parameters	5a	5b	6a.THF
CCDC NO.	2221980	2221981	2221982
Empirical formula	C ₄₇ H ₆₄ AlN ₄ PS	C ₄₇ H ₆₄ AlN ₄ PSe	C ₄₅ H ₆₀ AlN ₄ OPS
Formula weight	775.03	821.93	762.98
Т(К)	250(10)	249.99(10)	273.15
λ (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	P212121	P212121	<i>P</i> 2 ₁ /c
<i>a</i> (Å)	10.6056(4)	10.5605(5)	13.8759(6)
<i>b</i> (Å)	20.2557(7)	20.3370(10)	11.9000(5)
<i>c</i> (Å)	21.7565(7)	21.8728(9)	27.3412(10)
α (°)	90	90	90
β(°)	90	90	94.2650(10)
γ (°)	90	90	90
$V(Å^3)$	4673.8(3)	4697.6(4)	4502.2(3)
Ζ	4	4	4
D_{calc} (g cm ⁻³)	1.101	1.162	1.019
$\mu (\mathrm{mm}^{-1})$	0.157	0.886	0.156
F(000)	1672	1744	1480
Theta range for data collection	2.682 to 28.952 deg.	2.681 to 28.923 deg.	2.018 to 25.169 deg.
Limiting indices	$-14 \le h \le 10,$	$-13 \le h \le 13,$	$-15 \le h \le 16,$
	$-27 \le k \le 26$,	$-26 \le k \le 24,$	$-14 \le k \le 12$,
	$-28 \le l \le 23$	$-29 \le l \le 29$	$-32 \le l \le 32$
Reflections collected / unique	44544 / 10900 [R(int) =	60932 / 11137 [R(int)	39617 / 7971 [R(int) =
	0.0400]	= 0.0570]	0.0974]

Completeness of theta	99.68 %	99.76 %	99.13 %
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	1.00000 and 0.70905	1.00000 and 0.52605	0.7455 and 0.6896
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	10900 / 0 / 502	11140 / 0 / 502	7971 / 0 / 446
Goodness-of-fit on F ²	1.023	1.012	1.014
Final R indices [I>2Sigma(I)]	$R_1 = 0.0395, wR_2 =$	$R_1 = 0.0466, wR_2 =$	$R_1 = 0.0599, wR_2 =$
	0.0899	0.0772	0.1526
R indices (all data)	$R_1 = 0.0562, wR_2 =$	$R_1 = 0.0817, wR_2 =$	$R_1 = 0.1091, wR_2 =$
	0.0952	0.0835	0.1739

(ii) T2. (contd). Crystallographic data and refinement parameters of 6b and 7b.

Crystal parameters	6b	7b
CCDC NO.	2221983	2221985
Empirical formula	C ₄₁ H ₅₂ AlN ₄ PSe	C ₃₁ H ₄₈ AlN ₄ PSe
Formula weight	737.81	613.64
<i>T</i> (K)	273(2)	270.67(10)
λ (Å)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/n$	<i>P</i> 2 ₁ /c
<i>a</i> (Å)	10.1884(10)	16.5351(4)
<i>b</i> (Å)	17.2889(19)	11.7260(3)
<i>c</i> (Å)	22.976(3)	17.1772(5)
α (°)	90	90
β (°)	91.623(3)	102.702(2)
γ (°)	90	90
$V(Å^3)$	4045.5(8)	3248.99(15)
Ζ	4	4
D_{calc} (g cm ⁻³)	1.215	1.255

$\mu (\mathrm{mm}^{-1})$	1.022	1.257
<i>F</i> (000)	1556	1296
Theta range for data collection	2.129 to 25.036 deg.	2.987 to 29.116 deg.
Limiting indices	$-12 \le h \le 12$,	$-22 \le h \le 22,$
	$-20 \le k \le 20,$	$-15 \le k \le 15$,
	$-27 \le 1 \le 27$	$-23 \le 1 \le 21$
Reflections collected / unique	53392 / 7114 [R(int) = 0.0544]	36691 / 7689 [R(int) =
		0.0545]
Completeness of theta	99.71 %	99.70 %
Absorption correction	Multi-scan	Multi-scan
Max. and min. transmission	1.00000 and 0.95218	1.00000 and 0.46369
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on
	F^2	F^2
Data / restraints / parameters	7114 / 0 / 445	7689/0/355
Goodness-of-fit on F ²	1.033	1.100
Final R indices [I>2Sigma(I)]	$R_1 = 0.0352, wR_2 = 0.0848$	$R_1 = 0.0351, wR2 = 0.0884$
R indices (all data)	$R_1 = 0.0507, wR_2 = 0.0937$	$R_1 = 0.0451, wR2 = 0.0916$

2. Solid state structure of 2b-H, 3a-H, 3b-H, 4a-H, 4b-H, 5a, 6a, 6b, 7a and 7b

Figure S1. The molecular structure of **2b-H** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms, except H1, are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: P1-N1 1.6754(16), P1-N2 1.5909(16), P1-Se1 2.1094(5), P1-C28 1.819(2), N2-C1 1.305(2), N3-C1 1.371(2), N4-C1 1.359(2), N1-P1-N2 102.78(9), N1-P1-Se1 116.28(6), N2-P1-Se1 116.09(6), C28-P1-Se1 108.55(7), C28-P1-N1 105.41(9), C28-P1-N2 106.87(9), N3-C1-N4 105.69(15).

Figure S2. The molecular structure of **3a-H** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms, except H1, are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: P1-N1 1.691(3), P1-N2 1.621(3), P1-S1 2.0970(7) 1.9411(14), P1-C34 1.803(3), N2-C1 1.311(4), N3-C1 1.377(3), N4-C1 1.362(4), N1-P1-N2 98.34(11), N1-P1-S1

113.10(9), N2-P1-S1 119.59(10), C34-P1-S1 112.11(10), C34-P1-N1 103.75(13), C34-P1-N2 108.09(12), N3-C1-N4 104.6(2).

Figure S3. The molecular structure of **3b-H** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms, except H1, are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: P1-N1 1.7019(18), P1-N2 1.6229(18), P1-Se1 2.0972(6), P1-C34 1.824(2), N2-C1 1.304(3), N3-C1 1.369(3), N4-C1 1.373(3), N1-P1-N2 98.25(9), N1-P1-Se1 113.15(7), N2-P1-Se1 118.91(7), C34-P1-Se1 112.82(8), C34-P1-N1 102.90(10), C34-P1-N2 108.81(10), N3-C1-N4 105.22(18).

Figure S4. The molecular structure of **4a-H** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms, except H1, are omitted for clarity. Selected bond lengths (Å)

and angles (°) are given: P1-N1 1.693(2), P1-N2 1.596(2), P1-S1 1.9639(9), P1-C24 1.827(2), N2-C1 1.324(3), N3-C1 1.377(3), N4-C1 1.369(3), N1-P1-N2 109.42(11), N1-P1-S1 108.56(8), N2-P1-S1 117.02(8), C24-P1-S1 112.16(8), C24-P1-N1 101.31(10), C24-P1-N2 107.20(11), N3-C1-N4 105.8(2).

Figure S5. The molecular structure of **4b-H** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms, except H1, are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: P1-N1 1.695(3), P1-N2 1.601(2), P1-Se1 2.1244(8), P1-C12 1.828(3), N2-C1 1.325(4), N3-C1 1.372(4), N4-C1 1.371(4), N1-P1-N2 110.07(13), N1-P1-Se1 107.92(10), N2-P1-Se1 116.79(10), C12-P1-Se1 112.48(10), C12-P1-N1 101.03(13), C12-P1-N2 107.41(14), N3-C1-N4 105.9(3).

Figure S6. The molecular structure of **5a** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: Al1-N1 1.8824(19), Al1-N2 1.9918(18), Al1-C4 1.971(3), Al1-C5 1.959(3), N2-C1 1.337(3), N3-C1 1.357(3), N4-C1 1.365(3), N1-P1 1.6474(18), N2-P1 1.7050(18), P1-S1 1.9400(8), N1-P1-N2 91.32(9), N1-Al1-N2 76.43(8), N1-Al1-C4 118.95(12), N1-Al1-C5 112.47(11), C4-Al1-C5 112.30(13), N2-Al1-C4 108.30(12), N2-Al1-C5 124.55(10), P1-N1-Al1 99.08(9), P1-N2-Al1 93.05(9), N3-C1-N4 105.14(19).

Figure S7. The molecular structure of **6a** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: Al1-N1 1.876(2), Al1-N2 2.024(3), Al1-C4 1.945(4), Al1-C5 1.971(4), N2-C1 1.335(4), N3-C1 1.358(4), N4-C1 1.368(4), N1-P1 1.642(2), N2-P1 1.689(2), P1-S1 1.9364(11), N1-P1-N2 91.21(12), N1-Al1-N2 75.12(10), N1-Al1-C4 111.22(16), N1-Al1-C5 121.09(15), C4-Al1-C5 108.56(19), N2-Al1-C4 131.24(15), N2-Al1-C5 107.57(15), P1-N1-Al1 100.04(12), P1-N2-Al1 92.89(11), N3-C1-N4 105.3(3).

Figure S8. The molecular structure of **6b** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: All-N1 1.8900(19), All-N2 1.9861(18), All-C4 1.945(3), All-C5 1.973(3), N2-C1 1.973(3), N3-C1 1.357(3), N4-C1 1.362(3), N1-P2 1.6440(18), N2-P2 1.7005(18), P2-Sel 2.0871(6), N1-P2-N2 91.04(9), N1-All-N2 75.97(8), N1-All-C4 113.46(11), N1-All-C5 118.45(11), C4-All-C5 111.22(13), N2-All-C4 124.80(11), N2-All-C5 109.35(11), P2-N1-All 98.97(9), P2-N2-All 93.46(8), N3-C1-N4 105.10(19).

Figure S9. The molecular structure of **7a** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms are omitted for clarity.

Figure S10. The molecular structure of **7b** with thermal displacement parameters was drawn at 30% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) are given: Al1-N1 1.8989(15), Al1-Se1 2.4767(5), Al1-C4 1.9581(19), Al1-C5 1.964(2), N2-C1 1.318(2), N3-C1 1.382(2), N4-C1 1.375(2), N1-P1 1.6337(14), N2-P1 1.5780(16), P1-Se1 2.2270(5), N1-P1-Se1 95.75(6), N1-Al1-Se1 81.55(5), N1-Al1-C4 116.02(8), N1-Al1-C5 117.35(8), C4-Al1-C5 111.20(9), Se1-Al1-C4 113.69(6), Se1-Al1-C5 114.10(7), P1-N1-Al1 106.99(8), P1-Se1-Al1 74.190(18), N3-C1-N4 105.92(15).

3. NMR spectra of ligands 2a-H, 2b-H, 3a-H, 3b-H, 4a-H and 4b-H

Figure S11. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 2a-H.

Figure S12. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of **2a-H**.

Figure S13. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of **2a-H**.

Figure S14. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of **2b-H**.

Figure S15. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of **2b-H**.

Figure S16. ⁷⁷Se{¹H} NMR (57.36 MHz, C₆D₆, 298 K) spectrum of **2b-H**.

Figure S17. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of **2b-H**.

Figure S18. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of **3a-H**.

Figure S19. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of **3a-H**.

Figure S20. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of **3a-H**.

Figure S21. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of **3b-H**.

Figure S22. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of **3b-H**.

Figure S23. ⁷⁷Se{¹H} NMR (57.36 MHz, C₆D₆, 298 K) spectrum of **3b-H**.

Figure S24. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of **3b-H**.

Figure S25. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 4a-H.

Figure S26. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 4a-H.

Figure S27. ${}^{13}C{}^{1}H$ NMR (75 MHz, C₆D₆, 298 K) spectrum of 4a-H.

Figure S28. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 4b-H.

Figure S29. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 4b-H.

Figure S30. ⁷⁷Se{¹H} NMR (57.36 MHz, C₆D₆, 298 K) spectrum of 4b-H.

Figure S31. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of 4b-H.

4. NMR spectra of metal complexes 5a, 5b, 6a, 6b, 7a and 7b:

 $\begin{array}{c} & -2.2 \\$

Figure S32. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 5a.

Figure S33. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 5a.

Figure S34. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of 5a.

Figure S35. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 5b.

Figure S36. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 5b.

Figure S37. ⁷⁷Se{¹H} NMR (57.36 MHz, C₆D₆, 298 K) spectrum of 5b.

Figure S38. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of **5b** (* n-Hexane).

7.95 7.93 7.93 7.93 7.72 7.727.72

Figure S39. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of **6a** (* n-Hexane).

Figure S40. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 6a.

Figure S41. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of 6a.

Figure S42. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of **6b**.

Figure S43. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of **6b**.

Figure S44. 77 Se $\{^{1}$ H $\}$ NMR (57.36 MHz, C₆D₆, 298 K) spectrum of **6b**.

Figure S45. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of 6b.

Figure S46. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 7a.

Figure S47. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 7a.

Figure S48. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of 7a.

Figure S49. ¹H NMR (300 MHz, C₆D₆, 298 K) spectrum of 7b.

Figure S50. ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K) spectrum of 7b.

Figure S51. ⁷⁷Se{¹H} NMR (57.36 MHz, C₆D₆, 298 K) spectrum of 7b.

Figure S52. ¹³C{¹H} NMR (75 MHz, C₆D₆, 298 K) spectrum of 7b.

5. Catalytic hydroboration of nitriles

General catalytic procedure for the hydroboration of nitriles

Inside the glove box, the Al catalyst **5b** (2 mol %) and pinacolborane (HBpin, 1.1 mmol, 2.2 equiv) was added to a Schlenk tube followed by the addition of nitriles (0.5 mmol, 1 equiv). The Schlenk tube was taken out from the glove box and the reaction mixture was stirred at 60 °C for 12 hours. Finally, volatiles of the mixture were removed under the reduced pressure to obtain the hydroboration product. The yield was calculated from ¹H NMR spectroscopy with the help of 1,3,5-trimethoxy benzene as the internal standard. The progress of the reaction was monitored by ¹H NMR, which indicated the completion of the reaction by the appearance of a new R-C*H*₂-N(Bpin)₂ resonance.

NMR data of N,N-diborylamines

Yield: 98%. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H (ppm) 7.40-7.38 (m, 1H, Ar-*H*), 7.29-7.24 (m, 2H, Ar-*H*), 7.15-7.10 (m, 2H, Ar-*H*), 4.04 (s, 2H, C*H*₂), 1.17 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): δ_B (ppm) 25.3. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): δ_c (ppm) 142.9, 132.2, 128.4, 126.8, 126.6, 82.2, 45.3, 24.6.

4,4,5,5-tetramethyl-N-(2-methylbenzyl)-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine **(8b)**⁴.

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.49 (d, *J* = 8 Hz, 1H, Ar-*H*), 7.38 (t, *J* = 8 Hz, 1H, Ar-*H*), 7.23-7.15 (m, 2H, Ar-*H*), 3.90 (s, 2H, CH₂), 2.45 (s, 3H, CH₃), 1.13 (s, 24H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.8. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 141.9, 135.9, 132.6, 132.4, 130.2, 126.2, 82.2, 31.6, 24.7, 20.4.

4,4,5,5-tetramethyl-N-(4-(methylthio)benzyl)-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-3-amine (8c)⁵.

Yield: 95%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.41 (d, J = 8 Hz, 2H, Ar-H), 7.15 (d, J = 8 Hz, 2H, Ar-H), 3.96 (s, 2H, CH_2), 2.39 (s, 3H, S- CH_3), 1.14 (s, 24H, Bpin- CH_3). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.5. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 146.1, 139.9, 131.9, 125.4, 82.5, 44.6, 24.5, 14.5.

N-(4-(dimethylamino)benzyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine (8d)⁶.

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.13 (d, J = 8 Hz, 2H, Ar-H), 6.56 (t, J = 6 Hz, 2H, Ar-H), 4.05 (s, 2H, CH₂), 2.80 (s, 6H, N-CH₃), 1.12 (s, 24H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.7. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 149.4, 131.8, 128.7, 112.6, 82.2, 46.6, 40.9, 24.6.
N-(4-fluorobenzyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine (8e)⁴.

Yield: 98%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.21-7.18 (m, 2H, Ar-*H*), 6.86-6.83 (m, 1H, Ar-*H*), 4.10 (s, 2H, C*H*₂), 1.12 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.9. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 162.8, 138.9, 134.8, 129.3, 82.5, 46.7, 24.6.

N-(4-chlorobenzyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine (**8f**)⁴.

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H (ppm) 7.61-7.59 (m, 2H, Ar-*H*), 7.47-7.46 (m, 1H, Ar-*H*), 4.17 (s, 2H, C*H*₂), 1.19 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): δ_B (ppm) 25.6. ¹³C{¹H} NMR (150 MHz, CDCl₃, 298 K): δ_c (ppm) 133.5, 129.8, 129.1, 128.0, 82.6, 46.8, 24.6.

N-(4-bromobenzyl)-4,4,5,5-tetramethyl-*N*-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine **(8g)**⁴.

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.76-7.74 (m, 2H, Ar-*H*), 7.29-7.27 (m, 2H, Ar-*H*), 4.08 (s, 2H, C*H*₂), 1.11 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.6. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 142.8, 138.6, 133.2, 129.7, 82.5, 46.8, 24.6.

N-(4-iodobenzyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine **(8h)**⁵.

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H (ppm) 7.55-7.53 (q, 2H, Ar-*H*), 7.45-7.43 (q, 2H, Ar-*H*), 4.08 (s, 2H, C*H*₂), 1.11 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): δ_B (ppm) 25.7. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): δ_c (ppm) 142.14, 133.5, 132.7, 111.3, 82.5, 46.74, 24.6.

4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(trifluoromethyl)benz-yl)-1,3,2-dioxaborolan-2-amine **(8i)**⁴.

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.48-7.41 (m, 2H, Ar-*H*), 7.33-7.29 (m, 2H, Ar-*H*), 4.19 (s, 2H, CH₂), 1.17 (s, 24H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.9. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 147.2, 132.8, 127.7, 126.9, 125.3, 82.6, 44.9, 24.6.

N-(4-methoxyphenethyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine (8j)⁷.

Yield: 98%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.02-6.99 (t, 2H, Ar-*H*), 6.72-6.99 (q, 2H, Ar-*H*), 3.65 (s, 3H, O-C*H*₃), 3.17 (t, *J* = 8 Hz, 2H, C*H*₂), 2.56 (t, 2H, *J* = 8 Hz, C*H*₂), 1.08 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.51. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 157.8, 132.6, 130.2, 113.6, 82.0, 55.3, 45.4, 38.5, 24.5.

N-(4-fluorophenethyl)-4,4,5,5-tetramethyl-*N*-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine **(8k)**⁷.

Yield: 94%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.22-7.18 (m, 2H, Ar-*H*), 6.99-6.95 (m, 2H, Ar-*H*), 3.18 (t, *J* = 8 Hz, 2H, C*H*₂), 2.59 (t, *J* = 6 Hz, 2H, C*H*₂), 1.08 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.8. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 163.7, 136.1, 130.7, 129.8, 129.7, 116.2, 82.1, 45.2, 38.5, 24.5.

N-(2,2-diphenylethyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine (81)⁸.

Yield: 94%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.20-7.17 (m, 8H, Ar-*H*), 7.09-7.07 (m, 2H, Ar-*H*), 4.16 (t, *J* = 4 Hz, 1H, CH₂), 3.64 (d, *J* = 8 Hz, 1H, Ph₂(C*H*)), 1.10 (s, 24H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.7. ¹³C{¹H} NMR (100 MHz,

CDCl₃, 298 K): δ_c (ppm) 143.4, 136.0, 129.3, 128.8, 128.3, 128.2, 127.8, 126.1, 82.2, 48.5, 42.7, 24.5.

4,4,5,5-tetramethyl-*N*-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-*N*-(thiophen-2-ylmethyl)-1,3,2-dioxaborolan-2-amine **(8m)**⁹.

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H (ppm) 7.10-7.08 (m, 1H, Ar-*H*), 6.92-6.91 (m,1H, Ar-*H*), 6.87-6.85(m, 1H, Ar-*H*), 4.37 (s, 2H, C*H*₂), 1.22 (s, 24H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): δ_B (ppm) 25.5. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): δ_c (ppm) 146.9, 126.2, 124.6, 123.6, 82.6, 42.2, 24.6.

N-(2-methoxyethyl)-4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolan-2-amine (8n)⁷.

Yield: 98%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 3.23 (t, J = 6 Hz, 5H, CH_2 and O- CH_3), 3.13 (t, J = 6 Hz, 2H, CH_2), 1.14 (s, 24H, Bpin- CH_3). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 25.9. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 82.2, 74.2, 58.6, 42.8, 24.5.

N,N'-(1,4-phenylenebis(methylene))bis(4,4,5,5-tetramethyl-N-(4,4,5,5-tetramethyl-1,3,2-dioxabor)rolan-2-yl)-1,3,2-dioxaborolan-2-amine) **(80)**⁴.

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H (ppm) 7.79 (s, 4H, Ar-*H*), 4.18 (s, 4H, C*H*₂), 1.18 (s, 48H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): δ_B (ppm) 25.8. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): δ_c (ppm) 140.8, 132.9, 127.0, 116.9, 82.4, 47.1, 24.6.

General procedure for the primary ammonium salt

With the hydroboration product of the nitriles, 0.05 M HCl solution was added and stirred for 4 h at room temperature. Further primary ammonium salts were extracted from the water layer of a water-DCM mixture.

NMR data of primary ammonium salt

Benzyl ammonium salt (9a)⁴.

Yield: 90%. ¹H NMR (400 MHz, D₂O, 298 K): δ_H (ppm) 7.40-7.39 (m, 5H, Ar-*H*), 4.10 (s, 2H, C*H*₂). ¹³C{¹H} NMR (100 MHz, D₂O, 298 K): δ_c (ppm) 132.6, 129.2, 128.8, 43.1.

o-tolylmethanaminium chloride (9b)⁴.

Yield: 88%. ¹H NMR (400 MHz, D₂O, 298 K): δ_H (ppm) 7.25-7.16 (m, 4H, Ar-*H*), 4.08 (s, 2H, C*H*₂), 2.24 (s, 3H, C*H*₃). ¹³C{¹H} NMR (100 MHz, D₂O, 298 K): δ_c (ppm) 137.2, 130.8, 129.4, 129.1, 126.6, 40.4, 18.07.

(4-bromophenyl)methanaminium chloride (9c).

Yield: 89%. ¹H NMR (400 MHz, D₂O, 298 K): $\delta_{\rm H}$ (ppm) 7.52 (d, J = 8 Hz, 2H, Ar-H), 7.25 (d, J = 8 Hz, 2H, Ar-H), 4.05 (s, 2H, C H_2). ¹³C{¹H} NMR (100 MHz, D₂O, 298 K): $\delta_{\rm c}$ (ppm) 132.1, 131.7, 130.7, 122.7, 42.5.

(4-iodophenyl)methanaminium chloride $(9d)^{10}$.

Yield: 90%. ¹H NMR (400 MHz, D₂O, 298 K): $\delta_{\rm H}$ (ppm) 7.75 (d, J = 8 Hz, 2H, Ar-H), 7.13 (d, J = 8 Hz, 2H, Ar-H), 4.05 (s, 2H, C H_2). ¹³C{¹H} NMR (100 MHz, D₂O, 298 K): $\delta_{\rm c}$ (ppm) 138.2, 132.2, 130.7, 94.6, 42.6.

2-(4-fluorophenyl)ethanaminium chloride (9e).

Yield: 85%. ¹H NMR (400 MHz, D₂O, 298 K): $\delta_{\rm H}$ (ppm) 7.21 (t, J = 6 Hz, 2H, Ar-H), 7.03 (t, J = 10 Hz, 2H, Ar-H), 3.16 (t, J = 8 Hz, 2H, C H_2), 2.88 (t, J = 8 Hz, 2H, C H_2). ¹³C{¹H} NMR (100 MHz, D₂O, 298 K): $\delta_{\rm c}$ (ppm) 132.3, .130.6, 130.5, 115.7, 115.5, 40.6, 31.9.

6. Catalytic hydroboration of alkynes

General catalytic procedure for the hydroboration of alkynes

$$R \longrightarrow + H_{-B} \bigcirc Al \text{ cat.} \xrightarrow{\text{SD} (2 \text{ mol}\%)} R = \text{aryl or alkyl} \qquad Al \text{ cat.} \xrightarrow{\text{SD} (2 \text{ mol}\%)} R \xrightarrow{\text{Bpin}} R \xrightarrow{\text{Bpin}} R$$

Inside the glove box, the Al catalyst **5b** (2 mol %) and HBpin (0.5 mmol, 1 equiv) was added to a Schlenk tube followed by the addition of alkynes (0.5 mmol, 1 equiv). The Schlenk tube was taken out from the glove box and the reaction mixture was stirred at 60 °C for 12 hours. Finally, volatiles of the mixture were removed under the reduced pressure to obtain the hydroboration product. The

yield was calculated from ¹H NMR spectroscopy with the help of 1,3,5-trimethoxy benzene as the internal standard.

NMR data of vinylboronates

(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (10a)¹¹.

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.42-7.40 (m, 2H, Ar-*H*), 7.35-7.30 (d, J = 20 Hz, 1H, C*H*), 7.28-7.21 (m, 3H, Ar-*H*), 6.12-6.07 (d, J = 20 Hz, C*H*), 1.24 (s, 12H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 30.5. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 149.6, 137.6, 129.0, 128.7, 127.2, 83.5, 24.9.

(E)-4,4,5,5-tetramethyl-2-(3-methylstyryl)-1,3,2-dioxaborolane (10b)⁸.

Yield: 95%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.32-7.27 (d, J = 20 Hz, CH), 7.22-7.21 (m, 2H, CH₂), 7.17-7.12 (m, 2H, CH₂), 6.10-6.05 (d, J = 20 Hz, CH), 2.26 (s, 3H, CH₃), 1.23 (s, 12H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 30.0. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 149.8, 138.2, 137.6, 129.8, 129.7, 128.6, 127.9, 124.4, 83.4, 24.9, 21.5.

(E)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10c)¹¹.

MeO

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.36-7.33 (m, 2H, Ar-*H*), 7.30-7.25 (d, J = 20 Hz, 1H, C*H*), 6.79-6.74 (m, 2H, Ar-*H*), 5.96-5.91 (d, J = 20 Hz, 1H, C*H*), 3.71 (s, 3H, O-C*H*₃), 1.22 (s, 12H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 30.2. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 160.4, 149.2, 130.5, 128.6, 114.0, 83.3, 55.3, 24.9.

(*E*)-2-(3-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10d).

Yield: 95%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.29-7.24 (d, *J* = 20 Hz, 1H, C*H*), 7.22-7.18 (m, 1H, Ar-*H*), 7.17-7.15 (m, 1H, Ar-*H*), 7.11-7.08 (m, 1H, Ar-*H*), 6.92-6.90 (m, 1H, Ar-*H*), 6.11-6.06 (d, *J* = 20 Hz, 1H, C*H*), 1.23 (s, 12H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 30.1. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 164.3, 148.1, 139.9, 130.0, 123.01, 115.8, 115.6, 113.4, 113.2, 83.5, 24.8.

(E)-2-(2-bromostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10e).

Yield: 95%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.72-7.68 (d, *J* = 16 Hz, 1H, C*H*), 7.61-7.58 (m, 1H, Ar-*H*), 7.54-7.52 (m, 1H, Ar-*H*), 7.29-7.26 (m, 1H, Ar-*H*), 7.14-7.10 (m, 1H, Ar-*H*), 6.14-6.09 (d, *J* = 20 Hz, 1H, C*H*), 1.30 (s, 12H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 29.7. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 147.6, 134.2, 133.2, 132.6, 130.1, 127.6, 127.4, 127.1, 83.6, 24.9.

(E)-4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborolane (10f)¹⁰.

Yield: 94%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.33-7.29 (d, J = 16 Hz, 1H, CH), 7.24-7.22 (m, 2H, Ar-*H*), 7.20-7.18 (m, 1H, Ar-*H*), 5.90-5.85 (d, J = 20 Hz, 1H, CH), 1.23 (s, 12H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 30.3. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 143.3, 128.4, 126.3, 125.1, 83.5, 24.9.

(E)-2-(2-cyclohexylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10g)⁸.

Yield: 94%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 6.61-6.55 (dd, J = 4 Hz, 1H, CH), 5.40-5.35 (dd, J = 4 Hz, 1H, CH), 1.88-1.84 (m, 1H, Cyclohexyl-CH), 1.76-1.70 (m, 6H, CH₂), 1.27 (s, 12H, Bpin-CH₃), 1.21-1.17 (m, 4H, CH₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 29.8. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 160.0, 83.1, 43.4, 32.0, 26.3, 26.1, 24.9.

(E)-2-(2-cyclopentavinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10h)⁸.

Yield. 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 6.57-6.50 (dd, 1H, C*H*), 5.35-5.30 (dd, 1H, C*H*), 2.49-2.38 (m, 1H, Cyclopentyl-C*H*), 1.73-1.67 (m, 2H, C*H*₂), 1.59-1.53 (m, 2H, C*H*₂), 1.52-1.45 (m, 2H, C*H*₂), 1.32-1.27 (m, 2H, C*H*₂), 1.19 (s, 12H, Bpin-C*H*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 29.6. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 159.0, 83.1, 46.3, 32.5, 25.4, 24.9.

(E)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10i)¹¹.

Yield. 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 6.97-6.94 (d, J = 12 Hz, 1H, CH), 5.89 (t, J = 4 Hz, 1H, Cyclohexenyl-CH), 5.37-5.34 (d, J = 12 Hz, 1H, CH), 2.08-2.07 (d, 4H, CH₂), 1.61-1.58 (m, 2H, CH₂), 1.53-1.50 (m, 2H, CH₂), 1.20 (s, 12H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 30.3. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 153.4, 137.3, 134.4, 83.1, 26.3, 24.9, 23.9, 22.5, 22.4.

(E)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10j)⁸.

Yield. 93%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 6.96-6.93 (d, J = 12 Hz, 1H, CH), 5.37-5.34 (d, J = 12 Hz, 1H, CH), 2.07-2.05 (m, 5H, CH₂), 1.60-1.56 (m, 2H, CH₂), 1.53-1.49 (m, 2H, CH₂), 1.20 (s, 12H, Bpin-CH₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 29.7. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 154.9, 83.1, 35.6, 30.5, 24.9, 22.4, 14.1.

(E)-2-(5-chloropent-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10k)⁸.

Yield: 95%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 6.55-6.47 (dt,1H, *CH*), 5.44-5.39 (d, *J* = 20 Hz, 1H, *CH*), 3.46 (t, *J* = 6 Hz, 2H, *CH*₂), 2.25-2.21 (m, 2H, *CH*₂), 1.84-1.79 (m, 2H, *CH*₂), 1.19 (s, 12H, Bpin-*CH*₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 29.7. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 152.2, 83.2, 44.4, 32.8, 31.1, 24.9.

(*E*)-trimethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)ailane (101)⁸.

Yield: 95%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.12-7.09 (d, J = 12 Hz, 1H, CH), 6.24-6.21 (d, J = 12 Hz, 1H, CH), 1.26 (s, 12H, Bpin-CH₃), 0.06 (s, 9H, Si(CH₃)₃). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 29.7. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 157.9, 131.4, 83.5, 24.9, -1.76.

7. Catalytic hydroboration of alkenes

General catalytic procedure for the hydroboration of alkenes

Inside the glove box, the Al catalyst **5b** (2 mol %) and HBpin (0.5 mmol, 1 equiv) was added to a Schlenk tube followed by the addition of alkenes (0.5 mmol, 1 equiv). The Schlenk tube was taken out from the glove box and the reaction mixture was stirred at 60 °C for 12 hours. Finally, volatiles of the mixture were removed under the reduced pressure to obtain the hydroboration product. The yield was calculated from ¹H NMR spectroscopy with the help of 1,3,5-trimethoxy benzene as the internal standard.

NMR data of alkyl boronates

4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane (11a)¹².

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.19-7.12 (m, 5H, Ar-*H*), 2.67 (t, *J* = 8 Hz, 2H, C*H*₂), 1.13 (s, 12H, Bpin-C*H*₃), 1.06 (t, *J* = 10 Hz, 2H, C*H*₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 33.8. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 144.5, 128.3, 128.1, 125.6, 83.2, 30.1, 24.9.

2-(4-methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11b)¹³.

Yield: 93%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.05 (d, J = 8 Hz, 2H, Ar-H), 6.73 (d, J = 8 Hz, 2H, Ar-H), 3.68 (s, 3H, O-CH₃), 2.61 (t, J = 8 Hz, 2H, CH₂), 1.14 (s, 12H, Bpin-CH₃), 1.03 (t, J = 6 Hz, 2H, CH₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 33.2. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 157.7, 136.7, 128.9, 113.7, 83.2, 55.4, 29.2, 24.9.

2-(4-methylphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11c)¹².

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.03-7.02 (t, 2H, Ar-*H*), 6.99-6.98 (d, 2H, Ar-*H*), 2.63 (t, *J* = 6 Hz, 2H, C*H*₂), 2.22 (s, 3H, C*H*₃) 1.14 (s, 12H, Bpin-C*H*₃), 1.05 (t, *J* = 6 Hz, 2H, C*H*₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 33.8. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 141.5, 134.9, 128.9, 127.9, 83.2, 29.6, 24.9, 21.1.

2-(4-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11d)¹².

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.09-7.06 (m, 2H, Ar-*H*), 6.87-6.83 (m, 2H, Ar-*H*), 2.63 (t, *J* = 8 Hz, 2H, C*H*₂), 1.13 (s, 12H, Bpin-C*H*₃), 1.04 (t, *J* = 8 Hz, 2H, C*H*₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 33.9. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 162.4, 129.5, 128.3, 115.0, 114.8, 83.2, 29.3, 24.9, 24.6. 2-(4-chlorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11e)¹².

Yield: 97%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 7.13-7.12 (m, 2H, Ar-*H*), 7.05-7.04 (m, 2H, Ar-*H*), 2.63 (t, *J* = 6 Hz, 2H, C*H*₂), 1.12 (s, 12H, Bpin-C*H*₃), 1.03 (t, *J* = 6 Hz, 2H, C*H*₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 33.6. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 142.9, 129.5, 128.3, 127.5, 117.8, 83.3, 29.4, 24.9.

 $2-(6-bromohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11f)^{12}$.

Yield: 96%. ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta_{\rm H}$ (ppm) 3.35-3.31 (m, 2H, C*H*₂), 1.80-1.75 (m, 2H, C*H*₂), 1.38-1.32 (m, 4H, C*H*₂), 1.27-1.23 (m, 2H, C*H*₂), 1.17 (s, 12H, Bpin-C*H*₃), 0.71 (t, *J* = 6 Hz, 2H, C*H*₂). ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K): $\delta_{\rm B}$ (ppm) 33.9. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K): $\delta_{\rm c}$ (ppm) 83.0, 34.1, 32.8, 31.5, 28.0, 24.9, 23.9.

8. NMR spectra of hydroboration products

Figure S53. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8a.

Figure S54. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8a.

Figure S55. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8a.

Figure S56. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8b.

Figure S57. $^{11}B\{^1H\}$ NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8b.

Figure S58. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8b.

Figure S59. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8c.

Figure S60. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8c.

Figure S61. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8c.

Figure S62. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8d.

Figure S64. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8d.

--25.67

Figure S65. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8e.

Figure S66. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8e.

Figure S67. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8e.

Figure S68. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8f.

Figure S70. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8f.

Figure S71. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8g.

Figure S72. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8g.

Figure S73. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8g.

Figure S74. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8h.

Figure S76. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8h.

Figure S77. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8i.

Figure S78. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8i.

Figure S79. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8i.

Figure S80. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8j.

Figure S82. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8j.

Figure S83. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8k.

Figure S84. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8k.

Figure S85. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8k.

Figure S86. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 81.

Figure S87. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8l (* HBpin).

Figure S88. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 8l.

Figure S89. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8m.

Figure S90. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 8m.

Figure S91. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8m.

Figure S92. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 8n.

Figure S94. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 8n.

--25.87

Figure S95. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 80.

Figure S96. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 80.

Figure S97. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 80.

Figure S98. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 9a.

Figure S99. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 9a.

Figure S100. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 9b.

Figure S101. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 9b.

Figure S102. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 9c.

Figure S103. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 9c.

Figure S104. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 9d.

Figure S105. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 9d.

Figure S106. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 9e.

Figure S108. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10a.

Figure S110. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 10a.

--30.52

Figure S111. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10b.

Figure S112. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10b.

Figure S113. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10b.

Figure S114. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10c.

Figure S116. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 10c.

3.68

____1.23

Figure S117. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10d.

30.11

Figure S118. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10d.

Figure S119. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10d.

Figure S120. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10e.

Figure S122. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10e.

Figure S123. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10f.

---30.34

Figure S124. ${}^{11}B{}^{1}H{}$ NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10f.

Figure S125. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10f.

Figure S126. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10g.

Figure S127. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10g.

Figure S128. $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 10g.

Figure S129. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10h.

Figure S130. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10h.

Figure S131. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10h.

Figure S132. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10i.

Figure S134. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10i.

Figure S135. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10j.

Figure S136. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10j.

Figure S138. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10k.

Figure S139. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10k.

Figure S140. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 10k.

Figure S141. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 10l.

Figure S142. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 10l.

Figure S143. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 10l.

Figure S144. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 11a.

Figure S146. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 298 K) spectrum of 11a.

Figure S147. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 11b.

Figure S148. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 11b.

Figure S149. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 11b.

Figure S150. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 11c.

Figure S152. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 11c.

Figure S153. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 11d.

Figure S154. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 11d.

Figure S156. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 11e.

Figure S157. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 11e.

Figure S158. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 11e.

Figure S159. ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 11f.

___33.90

Figure S160. ¹¹B{¹H} NMR (128.4 MHz, CDCl₃, 298 K) spectrum of 11f.

Figure S161. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) spectrum of 11f.

9. Stoichiometric reaction between complex 5b and pinacolborane

In an NMR tube, a C₆D₆ solution of complex **5b** (20 mg, 0.024 mmol) was treated with two equiv. of pinacolborane (HBpin, 6 mg, 0.048 mmol) and then heated to 60 °C temperature in an oil bath and the reaction was then monitored over time. In ¹¹B NMR spectrum initially there was only one signal at δ_B 28.5 ppm which is accounting for HBpin. Later slowly a new additional peak appears at δ_B 34.0 ppm with time due to the production of MeBpin.

Figure S162. In situ observation of methylpinacolborane (MeBpin) formation from stoichiometric reaction of **5b** with pinacolborane (HBpin, 2 equiv.) were correlated by monitoring of the reaction progress using ¹¹B{¹H} NMR (96.3 MHz, C₆D₆, 298 K) spectroscopy at different time intervals [\star HBpin, \blacktriangle MeBpin].

Figure S163. ¹¹B{¹H} NMR (96.3 MHz, C₆D₆, 298 K) spectrum of stoichiometric reaction between complex **5b** and HBpin (1:2) after 24 h (reaction progress at 60 °C).

10. Selective hydroboration of carbonyl group over nitrile functionality in presence of one equivalent HBpin:

Inside the glove box, the Al catalyst **5b** (2 mol %) and HBpin (0.5 mmol, 1 equiv) was added to a Schlenk tube followed by the addition of 4-acetylbenzonitrile (0.5 mmol, 1 equiv). The Schlenk tube was taken out from the glove box and the reaction mixture was stirred at 60 °C for 12 hours in neat condition. Finally, volatiles of the mixture were removed under the reduced pressure to obtain the hydroboration product. The progress of the reaction was monitored by ¹H NMR with the help of 1,3,5-trimethoxy benzene as the internal standard in CDCl₃. A quartet resonance at $\delta = 5.26-5.29$ ppm indicates for the hydroboration of carbonyl group. In ¹¹B{¹H} NMR spectrum, only

one peak was observed at 22.1 ppm, which also confirmed the hydroboration of carbonyl group over nitrile functionality.

Figure S164. ¹H NMR (600 MHz, C₆D₆, 298 K) spectrum of the reaction of 4-acetylbenzonitrile with one equiv. HBpin in presence of cat. **5b** (2 mol%) [reaction condition: neat, 60 °C, 12 h].

-22.15

Figure S165. ¹¹B{¹H} NMR (193 MHz, C₆D₆, 298 K) spectrum of the reaction of 4acetylbenzonitrile with one equiv. HBpin in presence of cat. **5b** (2 mol%) [reaction condition: neat, 60 °C, 12 h].

Figure S166. ¹³C{¹H} NMR (150 MHz, C₆D₆, 298 K) spectrum of the reaction of 4acetylbenzonitrile with one equiv. HBpin in presence of cat. **5b** (2 mol%) [reaction condition: neat, $60 \degree$ C, 12 h].

11. Competitive hydroboration of alkyne and nitrile group in presence of 2 equivalents of HBpin:

1-ethynyl-3-methylbenzene (0.25 mmol, 1 equiv.), benzonitrile (0.25 mmol, 1 equiv.), pinacolborane (0.5 mmol, 2 equiv.) and Al catalyst **5b** (2 mol %) were charged in a Schlenk tube inside the glove box. The reaction mixture was stirred for 12 hours at 60 °C in neat conditions. Upon completion of the reaction, the progress of the reaction was monitored by ¹H NMR with the help of 1,3,5-trimethoxy benzene as the internal standard in CDCl3. A sharp singlet resonance at
δ = 4.15 ppm indicates for the formation of hydroboration product from benzonitrile (19% product formation), whereas doublet resonance at δ = 6.07 ppm (¹*J*_{HH} = 18 Hz) indicates for the formation of hydroboration product from 1-ethynyl-3-methylbenzene (83% product formation).

Figure S167. ¹H NMR (600 MHz, C₆D₆, 298 K) spectrum of the hydroboration reaction of 1ethynyl-3-methylbenzene and benzonitrile in presence of cat. **5b** (2 mol%) and 2 equiv. HBpin [reaction condition: neat, 60 °C, 12 h].

Figure S168. ¹¹B{¹H} NMR (193 MHz, C₆D₆, 298 K) spectrum of the hydroboration reaction of 1-ethynyl-3-methylbenzene and benzonitrile in presence of cat. **5b** (2 mol%) and 2 equiv. HBpin [reaction condition: neat, 60 °C, 12 h].

Figure S169. ¹³C{¹H} NMR (150 MHz, C₆D₆, 298 K) spectrum of the hydroboration reaction of 1-ethynyl-3-methylbenzene and benzonitrile in presence of cat. **5b** (2 mol%) and 2 equiv. HBpin [reaction condition: neat, 60 °C, 12 h].

12. Competitive hydroboration of alkyne and alkene group in presence of 1 equivalent of HBpin:

1-ethynyl-3-methylbenzene (0.25 mmol, 1 equiv.), styrene (0.25 mmol, 1 equiv.), pinacolborane (0.25 mmol, 1 equiv.) and Al catalyst **5b** (2 mol %) were charged in a Schlenk tube inside the glove box. The reaction mixture was stirred for 12 hours at 60 °C in neat conditions. Upon completion of the reaction, the progress of the reaction was monitored by ¹H NMR with the help of 1,3,5-trimethoxy benzene as the internal standard in CDC13. Doublet resonance at $\delta = 6.07$ ppm (¹*J*_{HH} = 18 Hz) indicates for the formation of hydroboration product from 1-ethynyl-3-methylbenzene (63% product formation), whereas triplet resonance at $\delta = 2.62$ ppm (¹*J*_{HH} = 6 Hz) indicates for the formation product from styrene (32% product formation).

 $^{-7,231}_{-7,221}$

Figure S170. ¹H NMR (600 MHz, C₆D₆, 298 K) spectrum of the hydroboration reaction of 1ethynyl-3-methylbenzene and styrene in presence of cat. **5b** (2 mol%) and 1 equiv. HBpin [reaction condition: neat, 60 °C, 12 h].

Figure S171. ¹¹B{¹H} NMR (193 MHz, C₆D₆, 298 K) spectrum of the hydroboration reaction of 1-ethynyl-3-methylbenzene and styrene in presence of cat. **5b** (2 mol%) and 1 equiv. HBpin [reaction condition: neat, 60 °C, 12 h].

Figure S172. ¹³C{¹H} NMR (150 MHz, C₆D₆, 298 K) spectrum of the hydroboration reaction of 1-ethynyl-3-methylbenzene and styrene in presence of cat. **5b** (2 mol%) and 1 equiv. HBpin [reaction condition: neat, 60 °C, 12 h].

13. References

- (1) G. M. Sheldrick, Acta Crystallogr, 2008, A64, 112-122.
- (2) L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- (3) S. Saha and M. S. Eisen, ACS Catal., 2019, 9, 5947-5956.
- (4) S. H. Doan and T. V. Nguyen, Green Chem., 2022, 24, 7382-7387.
- (5) P. Ghosh and A. J. V. Wangelin, Angew. Chem., Int. Ed., 2021, 60, 16035-16043.
- (6) T. T. Nguyen, J.-H. Kim, S. Kim, C. Oh, M. Flores, T. L. Groy, M.-H. Baik and R. J. Trovitch, *Chem. Commun.*, 2020, 56, 3959-3962.
- (7) A. Harinath, J. Bhattacharjee and T. K. Panda, Adv. Synth. Catal., 2019, 361, 850-857.
- (8) N. Sarkar, S. Bera and S. Nembenna, J. Org. Chem., 2020, 85, 4999-5009.
- (9) S. Ataie, J. S. Ovensb and R. T. Baker, Chem. Commun., 2022, 58, 8266-8269.
- (10) J. Bhattacharjee, A. Harinath, K. Bano and T. K. Panda, ACS Omega., 2020, 5, 1595-1606.
- (11) A. Bismuto, S. P. Thomas and M. J. Cowley, *Angew. Chem., Int. Ed.*, 2016, 55, 15356-15359.

- (12) S. Li, C. Hu, X. Cui, J. Zhang, L. L. Liu and L. Wu, Angew. Chem., Int. Ed., 2021, 60, 26238-26245.
- (13) Q. Zhao, X.-F. Wu, X. Xiao, Z.-Y. Wang, J. Zhao, B.-W. Wang and H. Lei, Organometallics, 2022, 41, 1488-1500.