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S1. Materials and instrumentation, synthetic work and characterization

Reagents and materials used. Solvents, organic and inorganic reagents were obtained from
commercial sources and used as received. Isocyanides (4-isocyano-N,N-dimethylaminaniline, 1-
chloro-4-isocyanobenzene, 1-bromo-4-isocyanobenzene, 1-iodo-4-isocyanobenzene, and 1-
isocyano-4-(trifluoromethyl)benzene) were synthesized by the modified version of the published
method.! Complex [{Pt(ppy)(x-C1)}2] was prepared by the known method?, that includes heating of
K2[PtCls] at 110 °C with 2.5 equivs of 2-phenylpyridine in a acetic acid. Complexes S1e® and S2a-
f4were prepared as reported earlier.

Instrumentation and methods. C, H, and N elemental analyses were carried out on a Euro
EA 3028 HT CHNSO analyzer. High resolution mass spectra were recorded in the positive ion mode
on a Shimadzu LCMS-9030 Q-TOF liquid chromatograph mass spectrometer equipped with an ESI
interface during direct probe injection in the range of 100-1000 m/z, and on Bruker micrOTOF
spectrometer equipped with ESI source during direct probe injection in the range of 50-3000; a
CHCl2/MeOH or MeCN/0,1%FA mixture was used as the solvent. The capillary voltage of the ion
source was set at —4500 V (ESI*) and the capillary exit at +(70-150) V. The nebulizer gas pressure
was 0.4 bar and drying gas flow was 3.0-4.0 L/min. The most intensive peak in the isotopic pattern
is reported. Infrared spectra were recorded on Shimadzu IRAffinity-1 FTIR instrument (4000—400
cm?, resolution 2 cm™?) in KBr pellets. NMR spectra were recorded on Bruker AVANCE 111 400
spectrometers in CDCl3 at ambient temperature (at 400, 100, 162, and 86 MHz for *H, *3C, 3!P, and
19pt NMR, respectively). Chemical shifts are given in S-values [ppm] referenced to the residual
signals of undertreated solvent (CHCIs): 8 7.26 (*H) and 77.2 (*3C). *H and *3C NMR data assignment
for 1-2 was achieved by using 2D (*H,'H-COSY, 'H,'H-NOESY, H,"*C-HMQC/HSQC and *H,*3C-
HMBC) NMR correlation experiments. UV/Vis spectra were recorded with a Shimadzu UV-2550
spectrophotometer. The CP/MAS NMR spectra were acquired using a double-resonance 4 mm MAS
Bruker probe at a resonance frequency of 162 MHz under 14 kHz MAS. 1°°Pt CP/MAS NMR spectra
were acquired using a direct excitation technique (DE). The CP contact time in all experiments was
3.5 us with a delay between acquisitions of 1 sec and number of scans was collected 20000. The
0.1 M [K2Pt(CN)4] water solution is used as an external reference (6-3822.71).

UV-vis absorption spectra were recorded on a Shimadzu UV-1800 spectrophotometer. The
excitation and emission spectra in solution (DCE) and in the solid state were recorded witha HORIBA
FluoroMax-4 spectrofluorimeter. Excited state lifetimes and absolute photoluminescence quantum
yields in the solid phase were measured on a HORIBA Scientific FluoroLog-3 spectrofluorometer
using a HORIBA Quanta-phi integration sphere. The uncertainty of the quantum yield determinations
was in the range of +5% (an average of three replications, each of which was done with different
orientations of the sample). The emission quantum yield in solutions was determined by comparative
method using coumarin 102 in ethanol (®r = 0.764) as reference;® refraction indexes of DCE and
EtOH equal to 1.4448 and 1.3614, respectively. The electroluminescence spectra were obtained with
an Instrument Systems CAS 120 Array spectrometer sensitive within 200-1100 nm. Current-voltage
characteristics were measured by using Keithley 2400 source-meter measurement unit.

X-ray Structure Determinations. Single crystals of 1la—f-and 2b suitable for single crystal
X-ray analysis were obtained by slow evaporation of the reaction mixture. A SCXRD experiment
was carried out using Xcalibur, Eos diffractometer. The crystal was kept 100(2) K during all data
collection. Structures were solved by the direct methods and refined by means of the ShelXL®
program, incorporated in the OLEX2 program package.” Empirical absorption correction was applied



in CrysAlisPro (Agilent Technologies, 2012) program complex using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm. CCDC numbers 2232158-2232160,
2232167-2232169, 2232172 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

Computational details. The calculations were performed using Gaussian 16 computer code & in
the DFT methodology. A hybrid exchange—correlation functional B3LYP ° was chosen for the most
accurate description of experimental trends. The Stuttgart-Dresden effective core pseudopotential
(SDD) and the corresponding basis set were used for platinum.!® The Pople's 6-31G* basis set was
chosen for carbon and hydrogen atoms and 6-311G* for bromine and iodine atoms, for all other atoms
6-311+G™ basis set was used.!! The 2f was necessary to be calculated using SDD for all atoms.
However, this modification of the basis set did not have a significant impact that was tested on other
compounds. The non-specific solvation effect of dichloroethane was taken into account by the
Polarizable Continuum Model (PCM).'? Contribution of fragments to orbitals were calculated by
Hirshfeld method*® using the Multiwfn 3.6 program.*

The electronic absorption spectra were calculated within TD-DFT methodology with 250 excited
states for all complexes. The convoluting of UV/Vis spectra from calculated oscillator strengths was
obtained using method described in ref.X> modified for Lorentzian broadening. Emission energies
were obtained as the difference between energies of optimized triplet and singlet states.

Qualitative picture of the displacement of the electron density during absorption and emission
transitions was established by the construction of NTO.® A number of electrons transferred between
the parts of the molecules has been obtained by IFCT (Interfragment charge transfer) method.'* The
Multiwfn 3.6 program* was used for both methods. The changes in electronic density Ap during the
So —Si transitions were calculated as:

Ap(So = S) = Tl irt)|> = TP (occ)|* (1),

where Wik(occ) and Wik(virt) are NTO pairs for So—S; transition. The electronic density's change
during T1 —S0 transition was calculated in analogous manner.



http://www.ccdc.cam.ac.uk/data_request/cif

Synthesis of Sla—f. [{Pt(ppy)(x~Cl)}2] (100 mg, 0.13 mmol) was suspended in DCE (4 mL),
whereupon a solution of an isocyanide (0.26 mmol) in DCE (2 mL) was added dropwise. The reaction
mixture was refluxed in air for approximately 2 h. During this period, the reaction mixture gradually
turned from yellow suspension to light yellow (in case for S1a — dark brown) solution. The sediment
had been obtained by addition of n-hexane (5 mL) to evaporated mixture (about 2 ml), after
centrifugated residue was washed with Et2O (three 2 mL portions) and dried in air at RT. The
complexes are air- and moisture-stable at 20200 °C; they are soluble in common aprotic solvents
(e.g. CH2Cl,, CHCl3) and in MeOH. Yields 67-86%.

3 Ar [Pt(ppy)CI(CN-CeHs-4-N(Me)2)] Sla. (23 mg, 67%). Light orange solid.

N 2 //N/ Anal. Calcd. (%) for C35sH34NsBF10O2Pt: C 45.25, H 3.42, N 7.91; found: C
° N \ /C/ 4538, H 3.40, N 7.65. HR-MS ESI" m/z: calcd. for CsoH3sNesCIPt"
7 /Pt\ 1026.1979, found 1026.1972 [2M — CI]*. IR (KBr, selected bands, cm™):
'~ |N Cl 2190 s (C=N). '"H NMR (400.13 MHz, CDCls, §): 3.03 (s, 6H, Me, Ar),
IR 6.63-6.67 (m, 2H, Ar), 7.11 (td, 1H, Jiu 7.4, 1.5 Hz, H3), 7.16 (td, 1H, Juu

v, 7.5, 1.3 Hz, H*), 7.29 (ddd, 1H, Jun= 7.3, 5.8, 1.3 Hz, H'%), 7.39-7.43 (d,

Ar = ;@LN(M% 2H, Juu 8.3 Hz, Ar), 7.55 (dd, 1H, Juu 7.6, 1.3 Hz, H°), 7.59 (dd, 1H, Jiu

- 7.5, 1.0 Hz, Jup: 67.5 Hz, H?), 7.73-7.75 (m, 1H, H®), 7.88 (td, 1H, Juu 8.0,

°e 1.5 Hz, H?), 9.59 (dd with Pt satellites, Jun 5.8, 0.9 Hz, Jup 28.8 Hz, 1H,

H!Y). BC{'H} NMR (100.61 MHz, CDCls, §): 40.18 (Me), 111.75 (CH from Ar), 115.13 (C-ipso from

AR), 118.45 (s with Pt satellites, Jcpt = 35.5 Hz, C®), 122.14 (s with Pt satellites, Jcp = 25.8 Hz,

C'%), 124.09 (s with Pt satellites, Jcpe = 39.3 Hz, C°), 124.43 (C*), 127.50 (CH from Ar), 131.31 (s

with Pt satellites, Jcpe = 73.3 Hz, C*), 136.25 (s with Pt satellites, Jcp = 106.3 Hz, C2), 139.99 (C%),

141.26 (C'), 144.07 (C®), 148.98 (s with Pt satellites, Jcpi = 21.3 Hz, C!!), 150.75 (CN(Me), from

Ar), 166.39 (C7); the Cisocyanide resonances were not detected. '°Pt{'H} NMR (80.015 MHz, CDCls,
d): —3899.

3 p-Tol [Pt(ppy)CI(CNp-Tol)] S1b. (24 mg, 73%). Light yellow solid. Anal.

4 2 //N/ Calcd. (%) for C19HisN2CIPt: C 45.17, H 3.01, N 5.58; found: C 45.61,
5 L7 H 2.94, N 5.44. HR-MS ESI' m/z: calcd. for C1oHisN2Pt™ 466.0877,
g /Pt\ found 466.0883 [M — CI]*. IR (KBr, selected bands, cm™'): 2187 s (C=N).
87" "N Cl 'H NMR (400.13 MHz, CDCl3, §): 2.42 (s, 3H, Me), 7.12 (td, 1H, Jun
9 Q0 | 1 7.4,1.5Hz, H%), 7.18 (td, 1H, Juu 7.5, 1.2 Hz, H*), 7.28 (d, 2H, Juu 8.3
10 Hz, p-tol), 7.32 (ddd, 1H, Juu= 7.3, 5.8, 1.4 Hz, H'®), 7.47 (d, 2H, Jun

8.3 Hz, p-tol), 7.55-7.59 (m, 2H, H? and H>), 7.75-7.77 (m, 1H, H®), 7.90 (td, 1H, Junu 7.9, 1.6 Hz,
H?), 9.59 (dd with Pt satellites, Juu 5.8, 0.8 Hz, Jup: 29.4 Hz, 1H, H''). BC{'H} NMR (100.61 MHz,
CDCl3, 8): 21.52 (Me), 118.51 (C?®), 122.22 (C'?), 124.18 (C), 124.64 (C*), 126.30 (CH from p-tol),
130.30 (CH from p-tol), 131.42 (C?), 136.17 (C?), 140.17 (C°), 140.70 (CMe from p-tol), 141.32 (C!),
144.05 (C%), 149.00 (C'"), 166.41 (C7); the Cisocyanide resonances were not detected. ' Pt{!H} NMR
(80.015 MHz, CDCls, §): —3897.



[Pt(ppy)CI{CNCsH4CI}] Slc. (26 mg, 75%). Light yellow solid. Anal.

w

. , N/Ar Calcd. (%) for C1sH12N2CIPt: C 41.39, H 2.32, N 5.36; found: C 40.91, H
5 . & 2.21, N 5.30. HRESI-MS* m/z: calcd. for C1sH12CIN2Pt* 487.0333, found

) P 487.0333 [M - CI]*. IR (KBr, selected bands, cm™): s 2195 v(N=C). H
s N NMR (400.13 MHz, CDCls, 8): 7.11 (td, 1H, Jun= 7.4, 1.5 Hz, H%), 7.16 (td,
A U 1H, Jun = 7.5, 1.2 Hz, H%), 7.30 (ddd, 1H, Jun= 7.5, 5.9, 1.2, HY), 7.43—

> 7.47 (m, 2H, 2H from CsH4ClI), 7.52-7.55 (m, 2H from H?and H®, 2H from

> 3 CsH4Cl), 7.73-7.75 (m, 1H, H®), 7.89 (td, 1H, Jupn = 7.8, 1.5 Hz, H9), 9.54

Ar= g@Lm (dd with Pt satellites, Jun= 5.8, 0.8 Hz, Jupt = 29.0 Hz, 1H, H™). 3C{H}

7 NMR (100.61 MHz, CDCls, 6): 118.58 (s with Pt satellites, Jcpt = 33.9 Hz,

C?), 122.24 (s with Pt satellites, Jcpt = 27.7 Hz, C19), 124.25 (s with Pt

satellites, Jcpt = 40 Hz, C®), 124.78 (C*), 125.90 (C—CI from CgH4Cl), 127.74 (C—H from CsH4CI),

130.12 (C—H from CsH4Cl), 131.48 (s with Pt satellites, Jcpt = 70.1 Hz, C®), 136.10 (s with Pt

satellites, Jept = 106.4 Hz, C2), 136.23 (C-ipso from CsH4Cl), 140.33 (C°), 141.37 (CY), 144.99 (C?),

148.94 (s with Pt satellites, 3Jcpt = 23.1 Hz, C1%), 166.33 (C'N). %Pt {H} NMR (80.015 MHz,
CDCls, 5): —3883.

[Pt(ppy)CI{CNCsH4Br}] S1d. (32 mg, 87%). Light green solid. Anal. Calcd.
\ , AT (%) for C1gH12N2BrPt: C 38.15, H 2.13, N 4.94; found: C 38.19, H 2.12, N
) . & 493 HRESI-MS" m/z: calcd. for CieH1BrNaPt* 530.9810, found 530.9814

[M —CI]*. IR (KBr, selected bands, cm™): s 2169 v(N=C). *H NMR (400.13

6
\ N/Pt\CI MHz, CDCls, 3): 7.09 (td, 1H, Jun = 7.4, 1.4 Hz, H3), 7.14 (td, 1H, Jup =
X

w

| 7.4, 1.3 Hz, H%, 7.25-7.28 (m, 1H, HY), 7.42-7.44 (m, 2H, 2H from
" CeH4Br), 7.49-7.51 (m, 2H from H2and H®), 7.57-7.60 (m, 2H, 2H from
v, CsHaBr), 7.70-7.72 (m, 1H, H8), 7.87 (td, 1H, Jup = 8.0, 1.5 Hz, H9), 9.49
Ar = é@im (dd with Pt satellites, Jun = 5.8, 0.8 Hz, Jup: = 28.4 Hz, 1H, HY). B3C{*H}
NMR (100.61 MHz, CDCls, 8): 118.60 (s with Pt satellites, 3Jc.pt = 35.6 Hz,
¢ 9 C?), 122.24 (s with Pt satellites, Jcpt = 26.1 Hz, C*°), 124.23 (Ca/Br from
CsH4Br), 124.24 (s with Pt satellites, Jcpt = 19.6 Hz, C°), 124.75 (C*), 126.39 (CN from CNCsH4BTr),
127.92 (CarH from CgH4Br), 131.47 (s with Pt satellites, Jcpt = 72.1 Hz, C2), 133.05 (CaH from
CeH4Br), 136.10 (s with Pt satellites, Jcpt = 104.6 Hz, C?), 140.33 (C°), 141.38 (s with Pt satellites,
Jept = 1005.1 Hz, Ch), 143.93 (s with Pt satellites, Jcpt = 34.8 Hz, C°), 148.86 (s with Pt satellites,
Jept=21.5Hz, C), 166.25 (s with Pt satellites, Jcpt = 95.1 Hz, C'N). **Pt {!H} NMR (80.015 MHz,
CDCls, 6): —3879.

w

AT [Pt(ppy)CI(CNCsH4-4-CF3)] S1f. (26 mg, 73%). Light green solid. Anal.

! ? N Caled. (%) for CioHNoCIF3PE: C 41.06, H 2.18, N 5.04; found: C 41.19, H
NS 2.11, N 4.92. HR-MS ESI* m/z: caled. for CioH12F3sNoPt™ 520.0597, found
. ; N /Pt\CI 520.0595 [M — CI]". IR (KBr, selected bands, cm™'): 2194 s (C=N). '"H NMR
| (400.13 MHz, CDCls, 8): 7.08 (td, 1H, Juu 7.3, 1.7 Hz, H?), 7.12 (td, 1H,
IR Jun 7.4, 1.5 Hz, H*), 7.23-7.26 (m, 1H, H'®), 7.49 (ddd, Jun 12.7, 7.3, 1.4
v Hz, 2H, H? and H®), 7.68-7.73 (m, 5H, H® and 4H from CsH4-4-CF3), 7.85

Ar = & Y CoF, (td, 1H, Junu 7.9, 1.6 Hz, H°), 9.46 (dd with Pt satellites, 1H, Juu 5.8, 1.0 Hz,
-7 Jupe 28.4 Hz, H'). BC{'H} NMR (100.61 MHz, CDCls, §): 118.61 (s with

Pt satellites, Jcpt 35.1 Hz, C®), 122.26 (s with Pt satellites, Jc pt 26.6 Hz, C'°),

6



123.21 (q, Jer 272.8 Hz, CF3), 123.55 (C1")124.25 (s with Pt satellites, Jc.pt 38.9 Hz, C5), 124.80 (C%),
127.03 (q, Jor 3.8 Hz, C¥ and C%), 127.08(C? and C®), 131.49 (s with Pt satellites, Jep 71.6 Hz,
C?), 131.83 (q, Jer 33.4 Hz, C¥-CF3), 133.01 (Cisocyanide), 136.11 (s with Pt satellites, Jepi 105.3 Hz,
C?), 140.37 (C?), 141.51 (s with Pt satellites, Jep 1004.0 Hz, C'), 143.86 (s with Pt satellites, Je p
35.4 Hz, C°), 148.83 (s with Pt satellites, Jepi 21.0 Hz, C'), 166.18 (C7). '°°Pt{'H} NMR (80.015
MHz, CDCls, §): ~3866. °F NMR (376.50 MHz, CDCls, 5): —63.0.

General procedure for the synthesis of 1la—f and 2a—f. The morpholine (44 mg, 0.40 mmol) was
added to a solution of Sla—f) (0.04 mmol) or a suspension S2a—f (0.04 mmol) in CHCl, (2 mL) at
RT. The reaction mixture was ultrasound-treated for 1-2 min until formation a homogeneous
colorless solution of reaction mixture. The solvent was evaporated to a volume of 2 mL and then n-
heptane (5 mL) was added. The formed solid product was separated by centrifugation, washed with
three 2 mL portions of Et.O and then dried in air at RT.

la. Pale yellow solid (20 mg, yield 80%). Anal. Calcd. (%) for
C24H27N4CIOPt: C 46.64, H 4.40, N 9.07; found: C 46.18, H 4.47, N 8.90.
HR-MS ESI* m/z: calcd. for C24H27N4OPt™ 582.1829, found 582.1816 [M—
CI]*. IR (KBr, selected bands, cm™): 1481 (s) v(C=N and C=C from Ar),
1520 (vs), 1541 (vs) v(N—Cecarbene), 1585 (s), 1609 (s), 2924 (m-w), 3250 (m),
3327 (m) v(N—H). 'H NMR (400.13 MHz, CDCls, §): 2.82 (s, 6H, Me), 3.62—
3.91 (m, 6H, CH>), 4.64-4.79 (m, 2H, CH>), 6.52 (d, Ju,+ = 8.9, 2H, Ha from
CeHsNMey), 7.00-7.08 (m, 2H, H3 and H%), 7.13-7.17 (m, 1H, H9), 7.22
(dd, 1H, Jun = 7.0, 1.5, H?), 7.42-7.47 (m, 3H, H® and Har from CeHsNMey), 7.58-7.61 (m, 2H, H®
and NH), 7.74 (td, Jun = 8.0, 1.5, 1H, H°), 9.41-9.43 (m, 1H, H). ®C{*H} NMR (100.61 MHz,
CDCls, 9): 31.88 (Me), 40.52 (Me), 65.80 (CH2), 67.23 (CH), 112.24 (Ca—H from CsHsNMey),
117.84 (C8), 121.84 (C9), 122.58 (C®), 123.49 (C*), 126.87 (Ca—H from CsHsNMey), 130.31 (C3),
134.56 (C?), 138.18 (C°, Ca—NMey), 142.14 (CY), 144.37 (CP), 148.72 (CY), 148.75 (Caripso from
CGHANMEZ), 164.97 (C7), 185.18 (Ccarbene)- 195Pt {lH} NMR (86015 MHZ, CDC|3, 8) -36109.

Me 1b. Yield 21 mg, 88%. Light green solid. Calcd. (%) for
C23H24CIN3OPt: C 46.80, H4.11, N 7.13; found: C 47.22, H 4.05, N 7.02.
HRESI-MS+ m/z: calcd. for C23H25N30Pt+ 553.1619, found 553.1525
[M-CI]+. IR (KBr, selected bands, cm-1): 763 (m), 816 (m) & (C—H);
1027 (m), 1063 (m), 1524 (s) (N-H), 1540 (s) v(N—Ccarbene), 1610 (s),

N/Pt\CI \\/o 3347 (m) v(N-H). 1H NMR (400.13 MHz, CDCI3, 8): 2.19 (s, 3H, Me),

3.70-3.94 (m, 6H, morpholine), 4.64-4.69 (m, 1H, morpholine), 4.81—

4.86 (m, 1H, morpholine), 6.98 (d, 2H, JH,H = 8.2, 2H from p-tol), 7.02—

7.08 (m, 2H, H3 and H4), 7.15-7.20 (m, 2H, H10 and H5), 7.45 (dd, 1H,

JHH =75, 1.4, H2), 7.56-7.64 (m, 4H, H8, NH-carbene and 2H from p-tol), 7.76 (td, 1H, JH,H =

7.9, 1.6, H9), 9.43 (dd, 1H, JH,H = 5.6, 0.9, H11). 13C{1H} NMR (100.61 MHz, CDCI3, §): 20.97

(Me from p-tol), 45.86, 55.98, 65.77, 67.38 (C from morpholine); 117.89 (C8), 121.92 (C10), 122.72

(C5), 123.53 (C4), 125.10 (C-H from p-tol), 129.23 (C-H from p-tol), 130.38 (C3), 134.43 (C2),

135.58 (C—Me from p-tol), 137.67 (C—ipso from p-tol), 138.28 (C9), 141.96 (C1), 144.36 (C6),

148.78 (C11), 164.97 (C7), 185.30 (C-carbene). 195Pt {IH} NMR (86.015 MHz, CDCI3, §): —3608.




lc. Yield 20 mg, 83%. Light yellow solid. Anal. Calcd. (%) for
C22H21CI2N3OPt: C 46.36, H 3.47, N 6.90; found: C 45.88, H 3.55, N 6.78.
HRESI-MS™ m/z: calcd. for C22H2:CIN3Pt™ 574.1011, found 574.1026
[M—CI]*. IR (KBr, selected bands, cm™): 1043 (m), 1104 (s), 1310 (m),
1432 (m), 1452 (m) V(N—Ccarbene and C=C from Ar), 1549 (m) v(N-—
Cearbene), 3287 (m), 3417 (m) v(N-H). *H NMR (400.13 MHz, CDCls, 5):
3.75-3.91 (m, 6H, CH>), 4.65-4.71 (m, 1H, CH>, 4.80-4.85 (m, 1H, CH>),
7.07 (td, 1H, Jun= 7.4, 1.4 Hz, H®), 7.07 (td, 1H, Jun= 7.5, 1.4 Hz, H%),
7.10-7.15 (m, 2H, Har from CeH4Cl), 7.21 (ddd, 1H, Jhn= 7.5, 5.7, 1.3,
H1%), 7.46 (dd, 1H, Jun=7.5, 1.4, H®), 7.64-7.75 (m, 4H, H2, H® and Har from CsH4Cl), 7.78 (td, 1H,
Jun=7.8,1.6 Hz, H%), 7.84 (br, 1H, NHcarbene), 9.37 (dd, 1H, Jun=5.7, 0.9 Hz, H!). 3C{*H} NMR
(100.61 MHz, CDCls, §): 44.16 (CH,), 46.16 (CH.), 56.20 (CH.), 67.31(CHy), 118.58 (C?), 122.05
(C10),122.97 (C®), 123.67 (s with Pt satellites, Jc pt = 48 Hz, C*), 126.44 (Ca—H from CsH4Cl), 128.57
(Car—H from CgH4Cl), 130.49 (Ca—Cl from CsH4Cl), 131.20 (C3), 134.21 (C?), 138.50 (Car-ipso from
CeH4Cl), 139.07 (C®), 141.46 (CY), 144.35 (C°®), 148.66 (C1), 164.92 (C'), 185.31 (Ccarbene). *°Pt
{*H} NMR (80.015 MHz, CDCls, 5): —3606.

1d. Yield 24 mg, 92%. Light yellow solid. Anal. Calcd. (%) for
C22H2:CIBrN3sOPt: C 40.41, H 3.24, N 6.90; found: C 40.06, H 3.25, N
6.80. HRESI-MS"™ m/z: calcd. for C22H21:N3OBrPt* 618.0496, found
618.0512 [M—CI]*. IR (KBr, selected bands, cm™): 1227 (s), 1264 (s),
1307 (s), 1330 (s), 1424 (s), 1465 (s), 1486 (vs) v(C=N and C=C from
Ar); 1541 (vs), 1602 (s), 3258 (m) v(N-H). 'H NMR (400.13 MHz,
CDCls, 8): 3.73-3.93 (m, 6H, CH2), 4.66-4.84 (m, 6H, CH), 7.01 (td,
1H, Jun 7.3, 1.3 Hz, H®), 7.07 (td, 1H, Jun 7.4, 1.0 Hz, H%), 7.13 (dd,
1H,Jun 7.4,0.7 Hz, H?), 7.18-7.21 (m, 1H, H¥), 7.27-7.30 (m, 2H, Har
from CsH4Br), 7.46 (dd, 1H, Jun 7.7, 0.9, HY), 7.54 (br, 0.3H, NHcarbene),
7.64-7.67 (m, 3H, H8, Har from CsH4Br), 7.79 (td, 1H, Jun = 8.0, 1.5 Hz, H%), 9.39 (dd, 1H, Jupn=
5.6, 0.7, 1H, HY). C{*H} NMR (100.61 MHz, CDCls, §): 46.03 (CH>), 46.22 (CH,), 56.22 (CH>),
67.32 (CH2), 118.02 (C?), 119.23 (Ca—Br from CgsH4Br), 122.04 (C'9), 122.96 (C®), 123.68 (C%),
126.80 (Ca—H from CgH4Br), 130.46 (C®), 131.55 (Ca—H from CsH4Br), 134.16 (C?), 138.49 (C9),
139.49 (Car—ipso from CgH4Br), 141.55 (C'), 144.38 (C®), 148.71 (C'), 164.92 (C'N), 185.46
(Cearbene). *%°Pt {*H} NMR (80.015 MHz, CDCls, §): —3606.

le. Yield 23 mg, 82%. Light yellow solid. Anal. Calcd. (%) for
C22H21CIIN3OPt: C 37.70, H 3.02, N 6.00; found: C 36.85, H 2.97, N
6.15. HRESI-MS™ m/z: calcd. for Co2H22CIINsPt™ 700.0117, found
700.0126 [M+H]". IR (KBr, selected bands, cm™2): 1268 (s), 1326 (vs),
1484 (s) v(C=N and C=C from Ar); 1539 (S) V(N—Ccarbene); 1584 (s),
1605 (vs) & (N-H); 3284 (m) v(N—-H). *H NMR (400.13 MHz, DMSO-
des, 0): 4.42-4.46 (m, 1H, CH2), 4.53-4.62 (m, 3H, CH>), 3.90 (t, 2H,
Jun 4.3 Hz, CH2), 4.42-4.46 (m, 1H, CH2), 4.53-4.62 (m, 1H, CH>),
6.96-7.03 (m, 2H, H® and H%), 7.11 (dd, 1H, Jun=7.1, 1.4, H?), 7.18
(br, 0.2H, NHcarbene), 7.41-7.45 (m, 1H, HX), 7.15 (d, 2H, Jun = 8.6
Hz, Har from CeHal), 7.61 (dd, 1H, Jhn = 7.6, 1.4, H5), 7.64 (d, 2H, JuH = 8.7 Hz, Har from CeHal),
7.96-8.04 (m, 2H, H8 and H®), 9.29 (d, 1H, Jun = 5.3 Hz, H), 9.37 (br, 1H, NHcarbene). BC{*H}
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NMR (100.61 MHz, DMSO-dg, 8): 47.43 (CH.), 56.40 (CH3), 66.30 (CH>), 67.05 (CH>), 89.96 (Ca—
| from CeHal), 119.21 (C8), 122.93 (C*°), 123.01(C®), 124.45 (C*), 127.34 (Car—H from CgHal), 130.85
(C3), 134.30 (C?), 136.91 (Ca—H from CsHal), 139.85 (C®), 142.18 (Car—ipso from CgHal), 142.33
(C1), 144.43 (C®), 148.20 (C1), 164.83 (C"), 183.16 (Ccarbene). *°Pt {*H} NMR (80.015 MHz, CDCls,
5): —3582.

oF 1f. Yield 24 mg, 92%. Light green solid. Anal. Calcd. (%) for

®  Ca3H2NsCIF;0OPt: C 42.97, H 3.29, N 6.54; found: C 43.05, H 3.37, N
6.45. HRESI-MS" m/z: calcd. for Cz3H.:F3NsPt" 607.1318, found
607.1318 [M—CI]". IR (KBr, selected bands, cm™2): 1112 (s), 1164 (s),
1322 (vs), 1482 (m) v(C=N and C=C from Ar); 1548 (s) V(N—Ccarbenc);
1608 (s) 6 (N-H); 3446 (m) v(N—H). *H NMR (400.13 MHz, CDCls,
§): 3.71-3.93 (M, 6H, CHy), 4.74-4.82 (m, 2H, CHy), 7.01 (td, Jnn =
7.3,1.3, 1H, H3), 7.09 (td, Jun= 7.5, 1.2, 1H, H%), 7.13 (dd, 1H, Jun=
7.4,1.0, H%), 7.41 (ddd, Ju= 7.3, 1.3, 1H, H9), 7.43 (d, 2H, Jux = 8.5
Hz, H from CeH4CFs), 7.48 (dd, 1H, Jun = 7.6, 1.1, H®), 7.67 (d, 1H,
Jun =8.1Hz, H®), 7.81 (td, Jun= 8.0, 1.6, 1H, H®), 7.85 (br, 0.7H, NH-carbene), 8.02 (d, 2H, Jun =
8.4 Hz, H from CeH4CFs), 9.41 (dd, 1H, Jun =5.7, 0.9 Hz, HY). 3C{*H} NMR (100.61 MHz, CDCls,
8): 46.52 (CH,), 56.67 (CH,), 65.80 (CH2), 67.23 (CH2), 118.09 (C®), 122.10 (C9), 123.13(CY),
123.75 (C*%), 124.16 (C—H from CgH4CF3), 125.74 (q, Jc e = 3.7 Hz, Ca—H from CgH4CF3), 127.04
(0, JcF = 2.7 Hz, CA—CF3 from CgH4CF3), 130.59 (C®), 134.17 (C?), 138.61 (C°), 141.42 (Caripso
from CeH4CFs), 143.54 (CY), 144.39 (CF), 148.72 (C), 164.95 (C7), 186.40 (Ccarvene). CF3 wasn’t
detected. °F NMR (376.50 MHz, CDCls, 5): —62.2. %Pt {*H} NMR (86.015 MHz, CDCls, 5): —
3598.

2a. Yield 29 mg, 76%. Light yellow solid. Anal. Calcd. (%)
NMez ™% for CarHasN7BF4OzPE: C 49.23, H 5.14, N 10.86; found: C
50.05, H 5.21, N 10.77. HRESI-MS®* m/z: calcd. for
Ca7HasN7O2Pt" 815.3355, found 815.3340 [M-BF4]". IR (KBr,
selected bands, cm™): 1112 (s), 1334 (s), 1480 (m) v(C=N and
C=C from Ar); 1521 (vs), 1538 (vS) V(N—Ccarbene); 1607 (s) &
(N-H); 3236 (m), 3347 (m), 3419 (m) v(N-H). 'H NMR
(400.13 MHz, CDClg3, 9): 2.84 (d, 12H, Jun = 2.6 Hz, Me),
3.05-3.29 (m, 7H, CH>), 3.45-3.82 (m, 7H, CH>), 4.27 (d, 1H,
Jun=14.1 Hz, CHy), 4.40 (d, 1H, J4n = 13.9 Hz, CH>), 6.59—
6.62 (M, 4H, Har from CeHaN(CHs)2), 7.19-7.30 (m, 5H, H?,
H* HX® Har from CeHsN(CH3)z2), 7.43 (d, 2H, Jnn = 13.9 Hz,
Har from CsHaN(CHs)2), 7.49 (dd, 1H, Jun= 7.1, 1.0 Hz, H?), 7.68 (dd, 1H, Jun = 7.1, 1.0 Hz, H®),
7.89-7.91 (m, 1H, H8), 7.97-8.07 (m, 2H, H®, NHcarbene), 8.52 (br, 1H, NHcarbene), 8.65 (s, 1H, Jun=
5.0, HY). BC{*H} NMR (100.61 MHz, CDCls, §): 31.88, 40.88, 40.91 (Me), 44.49 (CH,), 45.33
(CH), 51.68 (CH2), 53.47 (CH2), 65.32 (CH2), 65.72 (CH>), 66.47 (CH>), 66.94 (CH.), 113.18,
113.25, 119.74 (C?®), 123.39 (C9), 123.99 (Car from CgHaN(Me),), 124.05 (C*), 124.96(C®), 125.24,
131.05, 131.08 (Car from CsHaN(Me)2), 131.24 (C?), 137.33 (C?), 139.05 (C®), 146.01 (Ca—N(Me).
from CsHaN(Me),), 148.82 (C—ipso from CgHsN(CHs)2), 148.84 (C1), 151.00 (C'?), 158.19 (CP),
167.94 (C'N), 178.99 (Ccarbene), 199.93 (Cearbene). 2°Pt {*H} NMR (80.015 MHz, CDCls, §): —3573.




2b. Yield 30 mg, 83%. Light green solid. Anal. Calcd. (%)
Me 1574 for CasHaoNsBF4OzPt: C 49.77, H 4.77, N 8.29; found: C 50.11,
H 4.81, N 8.34. HRESI-MS™ m/z: calcd. for C3sHaoNsO2Pt"
757.2824, found 757.2780 [M-BF4]". IR (KBr, selected bands,
cm™1): 1112 (s), 1334 (s), 1480 (m) v(C=N and C=C from Ar);
1521 (vs), 1538 (vs) V(N—Cecarbene); 1607 (s) 6 (N-H); 3236 (m),
3347 (m), 3419 (m) v(N-H). 'H NMR (400.13 MHz, CDCls,
8): 2.84 (d, 12H, Jun = 2.6 Hz, Me), 3.04-4.10 (m, 14H, CH>),
4.26 (d, 1H, Jup = 13.2 Hz, CHy), 4.39 (d, 1H, Jun = 13.4 Hz,
CHy), 7.05 (t, 3H, Jun = 4.9, H3, H* Har from p-tol), 7.22-7.28
(m, 3H, H° Har from p-Tol), 7.34 (d, 2H, Jun = 8.3 Hz, Har
from p-tol), 7.46-7.52 (m, 3H, H?, Har from p-tol), 7.70-7.72
(dd, 1H, Jup = 7.6, 1.1 Hz, H%), 7.90-7.92 (m, 1H, H®), 7.98—
8.02 (m, 1H, H%), 8.11 (br, 1H, NHcarbene), 8.58 (br, 1H, NHcarbene), 8.63 (d, 1H, Jun = 5.0, HY).
B3C{*H} NMR (100.61 MHz, CDCls, 8): 20.76 (Me), 20.80, (Me), 44.81 (CH,), 45.68 (CH2), 52.03
(CHz), 53.69 (CHy), 65.38 (CH>), 65.75 (CH2), 66.41(CH>), 66.92 (CH,), 119.86 (C?), 123.29 (C19),
123.45, 123.55 (Car from p-tol), 124.11 (C?), 124.25(C®), 129.73, 129.86 (Car from p-tol), 131.20
(C3), 134.73, 134.90 (Car from p-tol), 137.37 (C?), 139.04 (C°), 139.20, 139.23, 145.98 (C1), 151.02
(C1Y), 157.44 (C°®), 168.00 (C'N), 179.06 (Ccarbene), 200.95 (Ccarbene). 1Pt {*H} NMR (80.015 MHz,
CDCls, 6): —3552.

2c. Yield 28 mg, 88%. Light yellow solid. Anal. Calcd. (%) for
Ol 15F  CHuNSBCLFOzPt: C 44.76, H 3.87, N 7.91; found: C 44.94,
H 3.80, N 7.79. Anal. HRESI-MS® m/z: calcd. for
CasHuNsClOoPt* 797.1723, found 797.1727 [M-BF4]*. IR
(KBr, selected bands, cm2): 1108 (s), 1330 (s), 1489 (vs) v(C=N
)&N/\\ and C=C from Ar); 1544 (vs), 1590 (s) V(N—Ccarbene); 1608 (s) ¢

o (N-H); 3264 (m), 3423 (m) v(N-H). *H NMR (400.13 MHz,
CDCls, 3): 3.15-4.08 (m, 14H, CH,), 4.33 (d, 1H, Jn= 13.8 Hz,
CHy), 4.46 (d, 1H, Jup = 13.4 Hz, CHy), 7.20-7.29 (m, 5H, H®,
H* H©° Har from CsHsCl), 7.45-7.51 (m, 3H, H? Har from
CeHsCl), 7.66-7.69 (m, 3H, H, Har from CsHsCl), 7.92-7.96

(m, 1H, H®), 7.98-8.03 (m, 1H, H%), 7.92 (d, 1H, Jun = 5.1 Hz,
H1), 9.14 (br, 1H, NHcarbene), 9.60 (br, 1H, NHcarbene). *C{*H} NMR (100.61 MHz, CDCls, §): 43.19
(CHa), 46.47 (CHy), 47.20 (CH>), 52.29 (CH>), 54.02 (CH>), 65.57 (CH>), 65.97 (CH>), 66.25 (CH>),
66.86 (CH2), 120.07 (C®), 123.50 (C9), 124.30 (C*), 124.50 (Car from CeH4Cl), 124.58 (Car from
CeH4Cl), 124.74 (C®), 129.08 (Car—H from CgH4Cl), 129.21 (Car—H from CsH4Cl), 130.22 (Caripso
from CsH4Cl), 130.48 (Car-ipso from CsH4Cl), 131.37 (C®), 137.33 (C?), 139.45 (C?®), 140.62 (Car—
Cl from Ar), 140.70 (Ca—Cl from Ar), 146.01 (C'), 150.83 (C'?), 156.89 (C®), 168.05 (C'N), 179.47
(Cearbene), 201.76 (Cearbene). 2Pt {*H} NMR (80.015 MHz, CDCls, §): —3527.
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Br  |BF4 2d. Yield 38 mg, 93%. Light yellow solid. Anal. Calcd. (%)
for Cs3H3sNsBCl2F1sO2Pt: C 44.76, H 3.87, N 7.91; found: C

4494, H 3.80, N 7.79. HRESI-MS" m/z: calcd. for
Cs3H3:Ns02BroPt* 888.0704, found 888.0717 [M-BF4]*. IR

L (KBr, selected bands, cm™): 1116 (s), 1316 (s), 1486 (s) v(C=N
)\N/\\ and C=C from Ar); 1538 (vs), 1586 (S) V(N—Ccarbene); 1603 (m)

\\/O 5 (N=H); 3224 (m), 3419 (m) v(N—-H). *H NMR (400.13 MHz,
CDCls, 5): 3.15-3.36 (m, 6H, CHy), 3.49 (t, 1H, Jun = 9.7 Hz,

CHy), 3.55 (t, 1H, Juu= 9.7 Hz, CH2), 3.78 (d, 1H, Ju = 11.9

Hz, CHy), 3.85 (d, 1H, Jun = 11.9 Hz, CHy), 4.05-4.11 (m, 2H,

Br Jun= 9.7 Hz, CHy), 4.33 (d, 1H, Jun = 13.8 Hz, CH2), 4.46 (d,

1H, Jun = 13.4 Hz, CHy), 7.20-7.29 (m, 5H, H3, H*, H¥, Har from CsH4Br), 7.45-7.51 (m, 3H, H?,
Har from CsH4Br), 7.66—7.69 (m, 3H, H5, Har from CeH4Br), 7.92-7.96 (m, 1H, H?), 7.98-8.03 (m,
1H, H®), 7.92 (d, 1H, Jun = 5.1 Hz, H'Y), 9.14 (br, 1H, NHcarbene), 9.60 (br, 1H, NHcarbene). **C{*H}
NMR (100.61 MHz, CDCls, 5): 45.95 (CH>), 46.74 (CH>), 52.45 (CH>), 54.09 (CH,), 65.46 (CHy),
65.84 (CH>), 66.28 (CH>), 66.87 (CH>), 120.10 (C®), 123.57 (C9), 124.34 (C*), 124.91 (Car from
CsH4Br), 124.65 (Car from CeH4Br), 124.74 (C®), 131.42 (Car from CgH4Br), 131.65 (Car from
CeH4Br), 132.08 (Car-ipso from CsHaBr), 132.22 (Car-ipso from CeH4Br), 131.37 (C?), 137.26 (C?),
133.48 (C%), 140.90 (Car-Br from CsH4Br), 140.99 (Car-Br from CgH4Br), 145.98 (C1), 150.83 (C11),
156.61 (C®), 168.05 (C'N), 179.57 (Ccarbene), 201.71 (Cearbene). *°Pt {*H} NMR (80.015 MHz, CDCls,
). —3527.

| |BFa4 2e. Yield 41 mg, 91%. Light yellow solid. Anal. Calcd. (%)

for Ca3HzaNsBBroF4O2Pt: C 40.68, H 3.52, N 7.19; found: C

4502, H 363, N 7.10. HRESI-MS* m/z: calcd. for

Ca3HaaNsIOoPt" 981.0441, found 981.0452 [M-BF:]*. IR

(KBr, selected bands, cm™): 1108 (s), 1311 (s), 1481 (vs)

)¥N/\\ v(C=N and C=C from Ar); 1537 (s), 1583 (m) V(N—Cecarbene);

o) 1604 (m) & (N-H); 3346 (m), 3610 (m) v(N-H). '"H NMR

(400.13 MHz, CDClgs, §): 3.14-3.93 (m, 14H, morpholine),

4.30 (d, 1H, Jun = 13.9 Hz, CH20-morpholine), 4.41 (d, 1H,

Jn,n = 13.8 Hz, CH20-morpholine), 7.21-7.29 (m, 5H, H3, H%,

H1® CeHal), 7.42-7.45 (m, 2H, CgHal), 7.53-7.59 (m, 3H,

CeHal, H?), 7.67-7.69 (m, 1H, H%, 7.92-7.94 (m, 1H, H?),

8.00-8.07 (m, 1H, H®%), 8.50 (br, 1H, NH-carbene), 8.58 (d, 1H, Jun = 4.8 Hz, HY), 8.93 (br, 1H, NH-

carbene). *C{*H} NMR (100.61 MHz, CDCls, 8): 43.63, 46.61, 52.51, 54.12, 65.41, 65.78, 66.28,

66.87 (C-morpholine); 120.11 (C?), 123.57 (C9), 124.36 (C*), 124.66(C®), 124.95 (C from CgHal),

125.21(C from CsHal), 131.45 (C?), 137.19 (C?), 138.07 (C from CsHal), 138.21 (C from CgHal),

139.52 (C°), 141.45 (C—I from CgHal), 141.53 (C—I from CgHal), 145.94 (C1), 150.79 (C't), 156.47

(CY), 168.07 (C'N), 179.52 (C-carbene), 201.71 (C-carbene). %Pt {*H} NMR (80.015 MHz, CDCls,
d): —3535.
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cFy |BFs

2f. Yield 36 mg, 90%. Anal. Calcd. (%) for
C3s5H34NsBF1002Pt: C 44.13, H 3.60, N 7.35; found: C 45.00,
H 3.61, N 7.43. Light green solid. HRESI-MS™* m/z: calcd. for
CasH3aNsFsO2Pt" 865.2262, found 865.2269 [M-BF:]". IR
(KBr, selected bands, cm™): IR (KBr, selected bands, cm™):
1118 (s), 1321 (vs), 1436 (m), 1481 (m) v(C=N and C=C from
Ar); 1544 (s) V(N—Cecarbene); 1607 (S) o (N-H); 3325 (m)
v(N—H). 'H NMR (400.13 MHz, CDCls, §): 3.05-4.10 (m,
14H, morpholine), 4.29 (d, 1H, Jun = 14.1 Hz, CH.O-
morpholine), 4.40 (d, 1H, Ju,1 = 14.3 Hz, CH>O-morpholine),
7.23-7.31 (m, 3H, H3 H* HY), 7.43-7.55 (m, 5H, H?,
CeHaCF3), 7.64-7.66 (m, 2H, CsH4CF3), 7.70-7.72 (m, 1H,
H®), 7.83-7.85 (m, 2H, CeH4CF3), 7.96-7.98 (m, 1H, H®),

8.03-8.07 (m, 1H, H°), 8.60 (d, 1H, Jun = 4.9, H!), 8.67 (br, 1H, NH-carbene), 9.11 (br, 1H, NH-
carbene). *C{*H} NMR (100.61 MHz, CDCls, 3): 45.90, 46.81, 52.81, 54.35, 65.32, 65.68, 66.05,
66.66 (C-morpholine); 120.28 (C?), 122.31 (C°), 122.49 (C5), 123.69 (C*), 124.51, 124.89 (C—H from
CeHaCF3), 125.29 (d, Jcr = 11.4 Hz, C-H from CeH4CF3), 126.30-126.49 (m, C—H from CsH4CF3),
127.04 (q, JcF = 2.7 Hz, C-CF3 from CsH4CFs), 128.83, 131.59 (C%), 137.10 (C?), 139.73 (C?), 144.82
(C—ipso from CeH4CFs), 145.96 , 150.72 (C1), 155.85 (C*t), 155.85 (C?), 168.11 (C'N), 180.45 (C-
carbene), 202.83 (C-carbene), CFs wasn’t detected. *°F NMR (376.50 MHz, CDCls, §): —62.18, —
62.23. 1%Pt {{H} NMR (86.015 MHz, CDCls, 5): —3526.
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Table S1.1. Peak positions of V(CN) in FTIR spectra of complexes 1a—f.

Isocvanide V(CN) in V(CN) in AV(CN)
4 CNAr, cm® | [Pt(ppy)CI(CNR)] , cm
4-isocyano-N,N-dimethylaniline 2115 2190 75
1-isocyano-4-methylbenzene 212817 2187 59
1-chloro-4-isocyanobenzene 2126 2195 69
1-bromo-4-isocyanobenzene 2125 2169 44
1-iodo-4-isocyanobenzene 21283 2187 69
1-isocyano-4-(trifluoromethyl)benzene 2128 2194 68
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S2. X-ray Structure Determination

Table S2.1. Crystallographic data for complexes 1la—d

Identification code la 1b 1c 1d
Empirical formula C25H29Cl3NsOPt C235H25CI2N30Pt  [C22H21CIoN3OPt C22H21BrCIN;OPt
Formula weight 702.96 631.45 609.41 653.87

Crystal system 100.01(11) 100.01(13) 100.01(10) 100(2)
Temperature/K monoclinic monoclinic triclinic monoclinic
Space group P2:/n P2i/n P-1 P2i/n

a/A 20.05120(15) 19.2185(2) 9.5239(2) 14.5762(5)

b/A 11.10207(8) 10.5181(2) 9.9437(2) 11.5198(3)

/A 24.15392(17) 26.3711(4) 12.3820(4) 14.8132(5)

al® 90 90 108.371(2) 90

B/o 97.6964(6) 93.2060(10) 90.650(2) 105.883(4)

/o 90 90 111.780(2) 90

Volume/A3 5328.47(7) 5322.37(14) 1022.40(5) 2392.40(14)

Z 8 8 2 4

Peacg/cm?® 1.753 1.576 1.980 1.815

w/mm* 12.819 11.849 7.143 7.664

F(000) 2752.0 2456.0 588.0 1248.0

Crystal size/mm? 0.22 x 0.12 % 0.08 ]0.05 % 0.05%0.05 ]0.3x0.25x0.25 ]0.2x0.13x0.11
Radiation CuKa (. = 1.54184)|(CuKa (A = 1.54184) g@ﬁ‘;g = 184;’;%‘;%‘ =

20 rangefordata g 5951, 134 987  [5546t0134.97  [5.146t0 61.016  |4.958 to 54.996

collection/®

Index ranges

-24<h<24,-13<
k<13,-28<1<28

21<h<23,-12<
k<11,-30<1<31

-13<h<12,-13<
k<13,-17<1<17

-18<h<15,-13<
k<14,-19<1<18

Reflections collected

35754

48124

18795

12073

Independent reflections

9599 [Rint = 0.0423,
Rsigma = 00349]

9582 [Rint = 0.0594,
Rsigma = 00400]

5598 [Rint = 0.0387,
Rsigma = 00440]

5498 [Rint = 0.0355,
Rsigma = 00550]

Data/restraints/parame
ters

9599/0/642

9582/1/560

5598/1/266

5498/0/262

Goodness-of-fit on F?

1.064

1.045

1.030

0.991

Final R indexes [1>=2¢

(0]

R:1=0.0329, wR: =
0.0815

R1=0.0447, wR. =
0.1194

R1 =0.0240, wR: =
0.0460

R1=0.0281, wRz =
0.0503

Final R indexes [all
data]

R:1=0.0329, wR: =
0.0824

R1=0.0501, wR: =
0.1228

R1=0.0293, wR: =
0.0479

R1=0.0352, wR2 =
0.0528

Largest diff. peak/hole

e A3 3.66/-1.70 2.22/-1.40 1.42/-0.94 1.47/-1.35
Flack parameter
CCDC number 2232169 2232168 2232158 2232159
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Table S2.2. Crystallographic data for complexes 1le,f and 2b

Identification code le 1f 2b
Empirical formula C2,H>1CIIN;OPt C23H21CIFsN3OPt  |C3sH40BFaNsO-Pt
Formula weight 700.86 642.97 844.62

Crystal system 100(2) 296.00(10) 99.99(18)
Temperature/K triclinic triclinic triclinic

Space group P-1 P-1 P-1

a/A 9.7955(6) 9.9036(5) 11.6565(7)

b/A 9.9523(6) 9.9576(5) 11.9574(7)

c/A 12.1746(9) 12.3123(5) 15.1337(7)

a/° 91.527(5) 89.573(3) 80.977(4)

B/ 106.491(6) 72.113(4) 83.061(4)

y/° 111.705(5) 69.091(4) 68.144(5)
Volume/A® 1045.75(12) 1072.26(9) 1929.0(2)

Z 2 2 2

Pcacg/cm?® 2.226 1.991 1.454

w/mm* 8.332 6.715 7.266

F(000) 660.0 620.0 840.0

Crystal size/mm?3 0.34 x 0.3 x0.2 0.35x0.24 x0.21 0.24x0.2x0.1
Radiation 184;’%%;“ - 18’[;’;%‘;% B CuKa (.= 1.54184)
26 range for data 5.2581054.998  [5.3041064.552  |8.026 to 134.984

collection/®

Index ranges

[12<h<12,-12<k
<12,-15<1<15

-l4<h<14,-14<k
<14,-17<1<17

-13<h<13,-14<k
<14,-18<1<18

Reflections collected

11047

22956

12973

Independent reflections

4801 [Rin: = 0.0292,
Rsigma = 00421]

6998 [Rint = 0.0394,
Rsigma = 00426]

6932 [Rint = 0.0627,
Rsigma = 00595]

Data/restraints/parame
ters

4801/0/266

6998/0/293

6932/1/443

Goodness-of-fit on F?

1.060

1.039

1.023

Final R indexes [1>=2¢

(0]

R:1=0.0227, wR; =
0.0418

R: =0.0265, wR> =
0.0581

R: = 0.0355, wWR;, =
0.0873

Final R indexes [all
data]

R1=0.0254, wR; =
0.0431

R1=0.0303, wR: =
0.0604

R1=0.0380, wR> =
0.0893

Largest diff. peak/hole /
e A3

1.19/-0.88

2.25/-1.66

1.84/-1.84

CCDC number

2232160

2232167

2232172
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Figure S2.1. Molecular view of molecule A (left) and B (right) of complex 1a. Thermal
ellipsoids for are drawn at the 50% probability level.

Figure S2.2. Molecular view of molecule A (left) and B (right) of complex 1b. Thermal
ellipsoids for are drawn at the 50% probability level.
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Figure S2.3. Molecular view of complex 1c. Thermal ellipsoids for are drawn at the 50%
probability level.

Figure S2.4. Molecular view of complex 1d. Thermal ellipsoids for are drawn at the 50%

probability level.
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Figure S2.5. Molecular view of complex 1e. Thermal ellipsoids for are drawn at the 50%
probability level.

Figure S2.6. Molecular view of complex 1f. Thermal ellipsoids for are drawn at the 50%
probability level.
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Figure S2.7. Molecular view of complex 2b. Thermal ellipsoids for are drawn at the 50%

probability level.

Table S2.3. Selected bond lengths (A) and angles (°) for 1la—b.

la 1b

A B A B
Pt1-N1 2.078(4) 2.082(4) 2.080(5) 2.059(5)
Pt1-C1 1.992(5) 1.997(5) 1.990(6) 1.998(6)
Pt1-Cl1 2.4201(11)  2.4061(11)  2.4171(15)  2.4191(15)
Pt1-C12 1.978(5) 1.990(5) 1.998(6) 1.998(6)
N2-C12 1.344(6) 1.331(7) 1.339(8) 1.329(8)
N3-C12 1.343(6) 1.338(6) 1.340(8) 1.338(8)
£(C1-Pt1-N1)  81.16(16) 81.37(18) 81.3(2) 81.10(2)

2(N1-Pt1-CI1)  94.51(11) 94.60(11) 94.02(16) 94.65(15)

£(N2-C12-Ptl)  121.1(3) 121.7(4) 122.0(4) 122.3(5)
2(N3-C12-Ptl)  122.3(3) 121.0(4) 120.6(5) 119.002)
2(N3-C12-N2)  116.6(4) 117.3(4) 117.3(5) 118.5(3)
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Table S2.4. Selected bond lengths (A) and angles (°) for 1¢c—f.

1c 1d le 1f
Pt1-N1 2.078(4) 2.082(3) 2.070(3) 2.073(2)
Pt1-C1 1.991(4) 1.994(4) 1.970(3) 1.984(3)
Pt1-Cl1 2.4203(10)  2.4010(9) 2.4052(8) 2.4008(7)
Pt1-C12 1.985(3) 1.982(4) 1.987(3) 1.988(3)
N2-C12 1.356(4) 1.350(5) 1.347(4) 1.356(4)
N3-C12 1.334(4) 1.346(5) 1.339(4) 1.341(4)
£(C1-Pt1-N1)  81.10(11) 81.06(14) 81.09(12) 80.98(11)
£(N1-Pt1-Cl1)  94.07(7) 93.83(9) 94.00(8) 93.86(7)
£(N2-C12-Ptl)  125.3(2) 124.5(3) 125.7(2) 125.5(2)
£(N3-C12-Ptl)  119.2(2) 120.2(3) 118.0(2) 119.2(2)
£(N3-C12-N2)  115.3(3) 115.2(3) 116.3(3) 115.3(3)

Table S2.5. Selected bond lengths (A) and angles (°) for 2b.

Bond lengths 2b Angles (minimal value) 2b
Pt1-N1 2.077(4) £(C1-Pt1-N1) 80.62(18)
Pt1-C1 2.054(4) £(N1-Pt1-C12) 173.99(16)
Pt1-C12 2.025(5) £(N1-Pt1-C13) 94.54(17)
Pt1-C13 2.078(4) £(N3-C12-N2) 117.9(4)
N2-C12 1.323(6) £(N4—-C13-N5) 116.0(17)
N3-C12 1.339(6) £(C12-Pt1-C13) 90.83(16)
N4-C13 1.347(5) £(C1-Pt1-C13) 172.84(17)
N5-C13 1.330(5)
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Figure S2.8. N—Hcarene® #Cl interactions in 1a (left) and 1b (right)

Figure S2.9. N—Hcarenee e Cl interactions in 1c (left) and 1f (right) in the solid state.

Table S2.6. Distances and angles for N2Hcarbene***Cl interactions in la-f.

in the solid state.

Comp | Distance | Distance | £(N—HeCl), ° | Figure

ound NeeeCl, A | HeeeCl, A

la 3.286(6) 2.50(5) 168(5) S2.8

1b 3.512(6) 2.96(5) 141(8) S2.8
3.340(6) 2.70(4) 157(5)

1c 3.414(2) 2.608(16) | 167(2)

1d 3.354(3) 2.5584(10) | 150.7(2)

1e 3.486(3) 2.75(3) 168(4) S2.9

1f 3.422(3) 2.70(3) 170(4) S2.9
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Comparison, A

Bondi VVdW radii

3.30

Alvarez VdW radii

3.48
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S3. Photophysical data
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Figure S3.1. Absorption spectra of 1a,b,f in DCE, 298K (aerated).
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Figure S3.2. Absorption spectra of 1a,b,f in DCE, 298K (aerated).
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Figure S3.3. Absorption spectra of 1c-e in DCE, 298K (aerated).
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Figure S3.4. Absorption spectra of 2a,b,f in DCE, 298K (aerated).
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Figure S3.5. Absorption spectra of 2c—e in DCE, 298K (aerated).
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Figure S3.6. Emission spectra of 1¢c in DCE at different Aex, 298K (aerated).
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Figure S3.7. Excitation (dotted line) and emission (solid line) spectra of 1a,b,f,
298K, in solid state.
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Figure S3.8. Excitation (dotted line) and emission (solid line) spectra of 1c-e,
298K, in solid state.
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Figure S3.9. Excitation (dotted line) and emission (solid line) spectra of 2a,b,f 298K,
in solid state.
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Figure S3.10. Excitation (dotted line) and emission (solid line) spectra of 2c—e, 298K,
in solid state.
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Figure S3.11. Emission spectra of 2c—e in the solid state (Aex=365 nm, RT).
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S4. Computational results

Table S4.1. Selected bond lengths (A) and angles (°) for 1a—c of DFT optimized geometries

for ground state in DCE.

la 1b 1c
X-ray So X-ray So X-ray So
(mol. A) (mol. A)

Pt1-N1 2.078(4) 2.129380 2.080(5) 2.124383 2.074(3) 2.12732
Pt1-C1 1.992(5) 2.008950 1.990(6) 2.00742 1.976(3) 2.009221
Pt1-Cl1 2.4201(11) 2.522786 2.4171(15) 2.528533 2.4056(8) 2.518508
Pt1-C12 1.980(5) 2.013763 1.998(6) 2.01568 1.984(3) 2.011494
N2-C12 1.344(6) 1.347539 1.339(8) 1.350477 1.357(4) 1.354797
N3-C12 1.342(6) 1.350011 1.340(8) 1.345793 1.333(4) 1.345576
£(C1-Pt1-N1) 81.12(18) 80.201518 81.3(2) 80.244634 81.09(12) 80.226375
£(N1-Pt1-Cl1) 94.53(11) 94.984879 94.02(16) 95.335725 94.09(8) 95.047361
£(N2-C12-Pt1) 121.0(3) 120.606775 122.0(4) 121.021399 125.3(2) 120.850703
£(N3-C12-Pt1) 122.3(3) 122.617592 120.6(5) 121.85226 119.3(2) 122.849833
£(N3-C12-N2) 116.7(4) 116.761802 117.3(5) 117.126331 115.3(3) 116.237237

Table S4.2. Selected bond lengths (A) and angles (°) for 1d—f of DFT optimized geometries

for ground state in DCE

1d le 1f
X-ray So X-ray So X-ray So

Pt1-N1 2.082(3) 2.127812 2.070(3) 2.126723 2.073(2) 2.127342
Pt1-C1 1.994(4) 2.009116 1.970(3) 2.009171 1.984(3) 2.009515
Pt1-Cl1 2.4010(9) 2.518807 2.4052(8) 2.517664 2.4008(7) 2.516396
Pt1-C12 1.982(4) 2.010638 1.987(3) 2.010701 1.988(3) 2.009222
N2-C12 1.350(5) 1.345497 1.347(4) 1.355395 1.356(4) 1.359178
N3-C12 1.346(5) 1.354942 1.339(4) 1.345671 1.341(4) 1.343979
£(C1-Pt1-N1) 81.06(14) 80.193715 81.09(12) 80.187060 80.98(11) 80.202382
£(N1-Pt1-CI1)  93.83(9) 95.259735 94.00(8) 95.188018 93.86(7) 95.134179
£(N2-C12-Ptl) 124.5(3) 121.006739 125.7(2) 121.330772 125.5(2) 121.344493
£(N3-C12-Ptl) 120.2(3) 122.790031 118.0(2) 122.603632 119.2(2) 122.813114
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£(N3-C12-N2)

115.2(3)

116.143017

116.3(3)

116.000018

115.3(3)

115.751804
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Table S4.3. Selected bond lengths (A) and angles (°) for 2b,d of DFT optimized

geometries for ground state in DCE.

X-ray So X-ray So
Pt1-N1 2.077(4) 2.137849 2.071(4) 2.138301
Pt1-C1 2.054(4) 2.060517 2.042(5) 2.060443
Pt1-C12 2.025(5) 2.027271 2.009(5) 2.026620
Pt1-C13 2.078(4) 2.144223 2.065(4) 2.148776
N2-C12 1.323(6) 1.354535 1.351(7) 1.345722
N3-C12 1.339(6) 1.348723 1.341(7) 1.358710
N4-C13 1.347(5) 1.351661 1.370(6) 1.355310
N5-C13 1.330(5) 1.348710 1.316(6) 1.345811
£(C1-Pt1-N1) 80.62(18) 79.561166 81.04(19) 79.579703
£(N1-Pt1-C12) 173.99(16) 172.667804 174.74(18) 172.641711
£(N1-Pt1-C13) 94.54(17) 95.43307 94.40(16) 95.482342
£(N3-C12-N2) 117.9(4) 115.600294 116.0(3) 115.404965
£(N4-C13-N5) 116.0(17) 115.466153 115.3(4) 115.340235
£(C12-Pt1-C13)  90.83(16) 91.192501 90.48(19) 91.376408
£(C1-Pt1-C13) 172.84(17) 173.560005 172.8(2) 173.585815
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Figure S4.1. Absorption spectra of 1a (left) and 2a (right) in DCE solution: experimental (red)
and calculated (black) lines with oscillator strengths of electronic transitions (bars).
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Figure S4.2. Absorption spectra of 1b (left) and 2b (right) in DCE solution: experimental (red)
and calculated (black) lines with oscillator strengths of electronic transitions (bars).
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Figure S4.3. Absorption spectra of 1c (left) and 2c (right) in DCE solution: experimental (red)
and calculated (black) lines with oscillator strengths of electronic transitions (bars).
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Figure S4.5. Absorption spectra of 1e (left) and 2e (right) in DCE solution: experimental (red)
and calculated (black) lines with oscillator strengths of electronic transitions (bars).
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Figure S4.6. Absorption spectra of 1f (left) and 2f (right) in DCE solution: experimental (red) and
calculated (black) lines with oscillator strengths of electronic transitions (bars).
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Table S4.4. Experimental and calculated absorption maxima (L), extinction coefficients (g),
oscillator strengths (f) of 1la—f.

Contribution of

Complex ex10~

habs, M| olixem™ | Transitions dets, NN f ‘main NTO pair
(exp) (exp) (calc) (calc) in transition (%6)

la 257 6.4 Se—Ss 252 0.19 52

Se—Ss 284 0.16 60

281sh 4.2

Se—Ss 307 0.15 87

344 0.8 Se—S> 376 0.05 97

377 0.6 Se—S1 404 0.02 99

1b 250 6.5 So—Ss 251 0.15 52

282sh 3.2 So—Ss 283 0.20 8l

Se—Ss 292 0.09 >4

347 0.7 So—S2 361 0.01 99

382 0.5 So—S1 374 0.05 97

le 274 4.0 Se—Ss 251 0.21 62

Se—S4 255 0.15 86

282sh 1.8 So—S3 283 0.21 &

343 0.3 So—S2 358 0.01 97

383 0.3 So—S1 374 0.06 97

1d 250 2.9 Se—Ss 252 0.21 12

Se—Sa 257 0.28 83

279sh 1.4 So—Ss 283 0.21 77

344 0.2 Se—S2 357 0.01 99

385 0.2 Se—S: 373 0.06 97

le 251 4.0 Se—Ss 252 0.19 45

So—S4 261 0.46 1

280sh 2.0 So—Ss 283 0.21 8

344 0.3 Se—S2 357 0.02 99

385 0.3 Se—S1 373 0.06 97

1f 250 6.2 Se—Ss 257 0.48 87

283sh 3.1 So—S4 282 0.19 77

So—Ss 295 0.10 80

341 0.6 Se—Ss 355 0.01 99
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|377|

0.4

So—S1

373

0.06

97
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Table S4.5. Experimental and calculated absorption maxima (L), extinction coefficients (g),
oscillator strengths (f) of 2a—f.

Complex ex107 Contribution of
habs, MM | ) ol-ixem | Transitions Aabs, M f ‘main NTO pair
(exp) (exp) (calc) (calc) in transition (%)
2a 276 7.0 Se—Ss 279 0.09 ol
Se—Ss 297 0.20 9
323 2.6 Se—S3 308 0.31 93
361sh 0.9 So—S; 354 0.05 96
Se—S1 407 0.01 98
2b 250 6.3 Se—Ss 253 0.19 49
So—Ss 257 0.21 66
273sh 4.9 So—S3 279 0.15 52
Se—S2 282 0.11 39
325 1.2
358sh 0.6 Se—S1 359 0.04 96
2c 253 2.5 So—Ss 256 0.11 48
Se—Ss 260 0.21 63
272sh 2.2 So—Ss 278 0.22 67
325 05 Se—S2 306 0.10 8
359sh 0.2 Se—S1 356 0.06 96
2d 254 33 So—Ss 251 0.12 68
Se—Ss 261 0.21 41
272sh 2.9 So—Ss 277 0.22 64
325 0.6 Se—S2 306 0.09 80
357sh 0.2 Se—S1 356 0.06 96
2e 258 43 Se—Ss 252 0.18 49
Se—Sa 267 0.41 s
373sh 2.2 So—Ss 278 0.21 68
324 0.8 Se—S2 346 0.03 97
356sh 0.3 Se—S1 356 0.06 96
2f 255 6.5 Se—Ss 267 0.20 48
268 6.2 So—S4 285 0.24 61
324 1.2 So—Ss 310 0.09 3
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357sh

0.5

So—S>
So—S1

357
365

0.02
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Table S4.6. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of la. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt

PRy
ADC

Cl

Donor

Pt
PRy
ADC
Cl

Pt
0.006
0.001
0.040
0.000

Pt

0.090
0.021
0.297
0.000

So—S1
Acceptor
PPy ADC
0.121 0.004
0.017 0.000
0.788 0.023
0.000 0.000

So—Ss
Acceptor
ppy ADC
0.017 0.128
0.004 0.029
0.057 0.419
0.000 0.000

Cl
0.000
0.000
0.001
0.000

Cl
0.000
0.000
0.000
0.000

Donor

Pt

ppy
ADC

Cl

Donor

Pt
ppy
ADC
Cl

Pt
0.019
0.023
0.000
0.005

So—S2
Acceptor
ppy  ADC
0.369 0.011
0.461 0.013
0.002 0.000
0.092 0.003

Pt

0.032
0.029
0.021
0.003

So—S4
Acceptor
PRy ADC
0.287  0.062
0.262  0.057
0.183  0.040
0.024  0.005

Cl
0.001
0.001
0.000
0.000

Cl
0.000
0.000
0.000
0.000
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Donor

Pt

ppy
ADC

Cl

Pt
0.009
0.017
0.001
0.003

So—Ss

Acceptor
ppy ADC
0.204 0.087
0.397 0.170
0.015 0.006
0.059 0.025

Cl
0.002
0.004
0.000
0.006

Donor

Pt

ppy
ADC

Cl

Pt
0.010
0.167
0.004
0.000

T1—So
Acceptor
PRy ADC
0.042 0.000
0.736 0.002
0.019 0.000
0.002 0.000

Cl
0.001
0.016
0.000
0.000

Table S4.7. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 1b. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt
ppy
ADC
Cl

Pt

0.020
0.026
0.000
0.004

Acceptor
ppy ADC
0.358 0.009
0.481 0.013
0.004 0.000
0.082 0.002

Cl
0.000
0.001
0.000
0.000

Donor

Pt

ppy
ADC

Cl

Pt

0.038
0.003
0.009
0.000

So—S2
Acceptor
PPy ADC
0.699 0.018
0.064 0.002
0.165 0.004
0.000 0.000

Cl
0.001
0.000
0.000
0.000
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So—S3 So—S4
Acceptor Acceptor
Donor Donor
Pt ppy ADC Cl Pt ppy ADC Cl
Pt 0.074 0.288 0.051 0.000 Pt 0.024 0.455 0.012 0.006
ppy 0.074 0.288 0.051 0.000 ppy 0.018 0.333 0.009 0.000
ADC 0.025 0.097 0.017 0.000 ADC 0.006 0.114 0.003 0.000

Cl 0.009 0.036 0.006 0.000 Cl 0.001 0.023 0.001 0.000

So—8s T1—So
Acceptor Acceptor
Donor Donor
Pt ppy ADC Cl Pt ppy ADC Cl

Pt 0015 0156  0.024  0.000 Pt 0010 0046 0.000  0.001
ppy 0047 0482 0075 0000 ppy 0160 0743 0002 0.015
ADC 0009 0089 0014 0000 ADC 0004 0017 0000  0.000

Cl 0008 0079 0012  0.000 cl 0.000 0002 0.000  0.000

Table S4.8. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 1c. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.
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Donor

Pt

ppy
ADC

Cl

Donor

Pt

ppy
ADC

Cl

Donor

Pt
0.018
0.024
0.000
0.005

Pt
0.033
0.026
0.005
0.001

So—S1

Acceptor
ppy ADC
0.355 0.015
0.464 0.019
0.003 0.000
0.092 0.004

Acceptor
PPy ADC
0.446 0.030
0.350 0.024
0.063 0.004
0.019 0.001

So—Ss

Acceptor

Cl
0.000
0.001
0.000
0.000

Cl
0.000
0.000
0.000
0.000

Donor
Pt
Pt 0.036
ppy 0.003
ADC 0.008
Cl 0.000

So—S2

Acceptor
PPy ADC
0.702 0.029
0.059 0.002
0.156 0.007
0.000 0.000

Acceptor
PPy ADC
0.027 0.273
0.009 0.094
0.020 0.205
0.015 0.149

Donor
Pt
Pt 0.095
ppy 0.033
ADC 0.071
Cl 0.052
Donor

T1—So

Acceptor

Cl
0.001
0.000
0.000
0.000

Cl
0.000
0.000
0.000
0.000
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Pt

PRY
ADC

Cl

Pt
0.009
0.026
0.005
0.001

PRy
0.168

0.492
0.092
0.027

ADC
0.040
0.117
0.022
0.006

Cl
0.000
0.000
0.000
0.000

Pt

ppy
ADC

Cl

Pt
0.009
0.155
0.005
0.000

PRy
0.043

0.741
0.025
0.002

ADC
0.000
0.002
0.000
0.000

Cl
0.001
0.016
0.001
0.000

Table S4.9. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 1d. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt

PRy
ADC

Cl

Donor

Pt

PRy
ADC

Pt
0.019
0.024
0.000
0.005

So—S1

Acceptor
PRy ADC
0.354 0.014
0.465 0.019
0.003 0.000
0.092 0.004

Pt

0.026
0.019
0.002

So—S3
Acceptor
PPy ADC
0.480 0.029
0.350 0.021
0.039 0.002

Cl
0.000
0.001
0.000
0.000

Cl
0.001
0.001
0.000

Donor

Pt

ppy
ADC

Cl

Donor

Pt

ppy
ADC

Pt
0.034
0.003
0.006
0.000

So—S2
Acceptor
ppy  ADC
0.743 0.030
0.064 0.003
0.111 0.005
0.000 0.000

Pt
0.022
0.011
0.054

So—S4

Acceptor
PPy ADC
0.050 0.172
0.024  0.083
0.124 0.426

Cl
0.001
0.000
0.000
0.000

Cl
0.000
0.000
0.000
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Cl

Donor

Pt

PRy
ADC

Cl

0.001

Pt
0.010
0.021
0.011
0.002

0.027

0.002

4

So—Ss
Acceptor
ppy ADC
0.167 0.044
0.370 0.098
0.194 0.051
0.033 0.009

0.000

Cl
0.000
0.000
0.000
0.000

Cl

Donor

Pt

ppy
ADC

Cl

0.004

0.009

0.031

Pt
0.009
0.154
0.005
0.000

T1—So
Acceptor
ppy ADC
0.043 0.000
0.741 0.002
0.025 0.000
0.002 0.000

0.000

Cl
0.001
0.016
0.001
0.000

Table S4.10. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of le. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt
pRY
ADC
Cl

Pt
0.019
0.025
0.000
0.005

So—S1

Acceptor
ppy ADC
0.353 0.016
0.464 0.021
0.003 0.000
0.092 0.004

Cl
0.000
0.001
0.000
0.000

Donor

Pt
ppy
ADC
Cl

Pt

0.039
0.003
0.006
0.000

So—S2
Acceptor
PPy ADC
0.743 0.033
0.063 0.003
0.109 0.005
0.000 0.000

Cl
0.001
0.000
0.000
0.000
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aH

So—)S3 S0_>S4
Acceptor Acceptor
Donor Donor
Pt ppy ADC Cl Pt ppy ADC Cl

Pt 0032 0449 0044  0.000 Pt 0019 0022 0159  0.000
ppy 0024 0344 0034 0000 ppy 0002 0003 0021  0.000
ADC 0003 0039 0004 0000 ADC 0073 0087 0624  0.000
cl 0002 0023 0002  0.000 cl 0000 0001  0.004  0.000

, ?/‘
“}41

So—5s T1—So
Acceptor Acceptor
Donor Donor
Pt ppy ADC Cl Pt ppy ADC Cl

Pt 0023 0115 0060  0.000 Pt 0009 0043 0000  0.001
ppy 0059 0290 0151 0000 ppy 0152 0744 0001 0.015
ADC 0017 0086 0045 0000 ADC 0005 0026 0.000 0.001
cl 0020 0098 0051  0.000 cl 0.000 0002 0.000  0.000

Table S4.11. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 1f. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.
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So—S1 So—S2
Acceptor Acceptor
Donor Donor
Pt ppy ADC Cl Pt ppy ADC Cl
Pt 0.019 0.344 0.020 0.000 Pt 0.040 0.743 0.044 0.001
ppy 0.025 0.461 0.027 0.001 ppy 0.003 0.060 0.004 0.000
ADC 0.000 0.002 0.000 0.000 ADC 0.005 0.098 0.006 0.000

Cl 0.005 0.090 0.005 0.000 Cl 0.000 0.000 0.000 0.000

So—Ss So—S.

Acceptor Acceptor
Donor Donor
Pt ppy ADC Cl Pt ppy ADC Cl

Pt 0016 0301 0017  0.000 Pt 0038 0475 0.040  0.000
ppy 0029 0543 0030 0001  ppy 0026 0331 0028  0.000
ADC 0001 0016 0001 0000 ADC 0002 0031 0003  0.000

cl 0002 0041  0.002  0.000 cl 0002 0023 0002  0.000

e

So—8s T.—S
1 0

Donor Acceptor Donor Acceptor
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Pt

PRY
ADC

Cl

Pt
0.006
0.002
0.047
0.004

PRy
0.004

0.001
0.030
0.003

ADC
0.092
0.024
0.732
0.064

Cl
0.000
0.000
0.000
0.000

Pt

ppy
ADC

Cl

Pt
0.009
0.148
0.006
0.000

PRy
0.043

0.745
0.029
0.002

ADC
0.000
0.001
0.000
0.000

Cl
0.001
0.015
0.001
0.000

Table S4.12. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 2a. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt

PRy
ADC'*

ADC™

Donor

Pt

PRy
ADC'*

ADC™

Pt
0.001
0.000
0.018
0.021

Pt

0.017
0.008
0.120
0.059

Acceptor

ppy  ADCY
0.022 0.001
0.005 0.000
0.415 0.009
0.477 0.011

So—8Ss
Acceptor
ppy ADC'*
0.009 0.053
0.004 0.026
0.061 0.376
0.030 0.186

ADCW
0.000
0.000
0.009
0.011

ADCW
0.004
0.002
0.029
0.014

Donor

Pt

pRY
ADC'*

ADC™

Donor

Pt

PRy
ADC'*

ADC™

Pt

0.011
0.028
0.001
0.000

Pt

0.003
0.003
0.025
0.086

So—S2
Acceptor
ppy  ADC*
0.247  0.006
0.645 0.014
0.018 0.000
0.008 0.000

So—Ss
Acceptor
ppy ~ ADC
0.001  0.004
0.001 0.004
0.011 0.031
0.037  0.105

ADC™
0.005
0.014
0.000
0.000

ADC™
0.020
0.019
0.147
0.503
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Donor

Pt

ppy
ADC'*

ADC™

Pt
0.037
0.026
0.010
0.013

So—Ss

ppy
0.299

0.212
0.080
0.101

Acceptor
ADC®
0.084
0.060
0.023
0.028

ADCW
0.011
0.008
0.003
0.004

Donor

Pt

PRy
ADC'*

ADC™

Pt
0.005
0.105
0.002
0.002

T1—So
Acceptor
ppy  ADC*
0.038  0.000
0.806  0.007
0.016  0.000
0.017  0.000

ADCW
0.000
0.002
0.000
0.000
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Table S4.13. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 2b. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt

ppy
ADC'*

ADC™

Donor

Pt
ppy
ADC'*
ADC™

Pt
0.016
0.026
0.004
0.001

So—S1

Acceptor

ppy  ADC*
0.302 0.010
0.489 0.016
0.077 0.002
0.018 0.001

Pt
0.020
0.028
0.002
0.005

So—Ss3
Acceptor
ppy ADCt
0.164 0.092
0.230 0.130
0.015 0.009
0.045 0.025

ADC™
0.013
0.021
0.003
0.001

ADC™
0.085
0.119
0.008
0.023

Donor

Pt

pRY
ADC'*

ADC™W

Donor

Pt
PRy
ADC'
ADC™

Pt
0.029
0.018
0.003
0.010

So—S:2
Acceptor
ppy  ADC'
0.236  0.109
0.149  0.069
0.024  0.011
0.085  0.040

Pt
0.008
0.004
0.025
0.026

So—>SA

Acceptor
ppy  ADC'
0.039 0.060
0.018 0.027
0.119 0.184
0.117 0.181

ADC™
0.103
0.065
0.011
0.037

ADC™N
0.026
0.012
0.079
0.078
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Donor

Pt

PRy
ADC'*

ADC™

Pt
0.018
0.004
0.028
0.034

PRY
0.016

0.004
0.024
0.029

Acceptor
ADC™*®
0.074
0.018
0.112
0.137

ADC™
0.109
0.026
0.164
0.202

Donor

Pt

PRy
ADC'*

ADC™

Pt
0.006
0.108
0.003
0.004

Acceptor
ppy  ADC'
0.042  0.000
0.776  0.008
0.021  0.000
0.027  0.000

ADC™
0.000
0.005
0.000
0.000
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Table S4.14. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 2c. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

So—S1 So—S2
Acceptor Acceptor

Donor Donor

Pt ppy ADC' ADCWM Pt ppy ADC*  ADCW

Pt 0.012 0.217 0.010 0.014 Pt 0.005 0.096 0.004 0.006
ppy 0.035 0.616 0.028 0.039 ppy 0.033 0.648 0.028 0.043

ADC*® 0.001 0.022 0.001 0.001 ADC® 0.001 0.013 0.001 0.001
ADC™  0.000 0.003 0.000 0.000 ADC™  0.005 0.105 0.005 0.007

0.80—)33 So—>S4

Acceptor Acceptor
Donor Donor
Pt ppy ADC' ADCW Pt ppy ADC' ADCW
Pt 0.021 0.411 0.038 0.021 Pt 0.003 0.024 0.020 0.013
ppy 0.014 0.261 0.024 0.013 ppy 0.007  0.060 0.051 0.032
ADC®*  0.002 0.036 0.003 0.002 ADC®™  0.009 0.086 0.073 0.046
ADC™  0.007 0.128 0.012 0.007 ADC™  0.025 0.230 0.196 0.123
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Donor

Pt

PRy
ADC'*

ADC™

Pt
0.008
0.005
0.015
0.011

PRY
0.053

0.035
0.104
0.078

Acceptor
ADC™*®
0.049
0.032
0.097
0.073

ADC™
0.086
0.057
0.170
0.128

Donor

Pt

PRy
ADC'*

ADC™

Pt
0.006
0.110
0.004
0.005

Acceptor
ppy  ADC'
0.042  0.000
0.761  0.007
0.025  0.000
0.032  0.000

ADC™
0.000
0.007
0.000
0.000
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Table S4.15. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 2d. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

So—S:
Acceptor Acceptor

Donor Donor
Pt ppy ADC™* ADC™ Pt ppy ADC™* ADC™
Pt 0.013 0.219 0.009 0.013 Pt 0.005 0.093 0.004 0.006
ppy 0.036 0.617 0.026 0.036 ppy 0.030 0.586 0.024 0.036
ADC®  0.001 0.024 0.001 0.001 ADC® 0.001 0.019 0.001 0.001
ADC™  0.000 0.003 0.000 0.000 ADC™  0.009 0.169 0.007 0.010

So—S3

Acceptor Acceptor
Donor Donor
Pt ppy ADC' ADC™ Pt ppy ADC*  ADCW
Pt 0.022 0.431 0.043 0.021 Pt 0.008 0.109 0.031 0.053
ppy 0012 0241  0.024 0.012 ppy  0.005 0.067  0.019 0.032
ADC®  0.001 0.026 0.003 0.001 ADC 0.012 0.169 0.047 0.082
ADCW 0.007 0.136 0.014 0.007 ADCWN 0.014 0.200 0.056 0.097

So—Ss T1—So

Donor Acceptor Donor Acceptor
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Pt

PRy
ADC'®

ADC™

Pt
0.016
0.003
0.006
0.020

PRy
0.025

0.005
0.009
0.032

ADC'*

0.018
0.003
0.007
0.023

ADCW
0.297
0.053
0.111
0.372

Pt

PRy
ADC'*

ADCW

Pt
0.006
0.104
0.003
0.004

PRy
0.043

0.770
0.024
0.031

ADC'*
0.000
0.006
0.000
0.000

ADC™
0.000
0.006
0.000
0.000
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Table S4.16. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 2e. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-

diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt

ppy
ADC*©

ADC™

Donor

Pt

pRy
ADC'¢

ADC™

Donor

Pt

0.013
0.035
0.002
0.000

Pt

0.024
0.014
0.001

0.006

So—S1
Acceptor
ppy  ADC
0.220 0.010
0.606 0.029
0.029 0.001
0.003 0.000

So—Ss
Acceptor
ppy ADCt
0.424 0.032
0.255 0.019
0.026 0.002
0.103 0.008

So—Ss

Acceptor

ADC™
0.013
0.037
0.002
0.000

ADC™
0.045
0.027
0.003
0.011

So—S:
Acceptor
ppy  ADC'
0.656  0.031
0.058  0.003
0.046  0.002
0.098 0.005

Donor
Pt
Pt 0.038
ppy 0.003
ADC®*  0.003
ADC™  0.006
Donor
Pt
Pt 0.006
ppy 0.004
ADC®*  0.004
ADC™ 0.041
Donor

So—S4
Acceptor
ppy  ADC'*
0.011 0.049
0.006 0.030
0.007 0.035
0.070 0.325

T1—So

£

Acceptor

ADCW
0.040
0.004
0.003
0.006

ADC™
0.046
0.028
0.033
0.305
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Pt

PRy
ADC'®

ADC™

Pt
0.014
0.003
0.008
0.014

PRy
0.017

0.003
0.010
0.017

ADC'*

0.115
0.021
0.066
0.109

ADCW
0.223
0.041
0.127
0.211

Pt

PRy
ADC'*

ADC™W

Pt
0.005
0.097
0.003
0.004

PRy
0.044

0.776
0.026
0.033

ADC'*
0.000
0.007
0.000
0.000

ADC™
0.000
0.004
0.000
0.000
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Table S4.17. The decrease (violet) and increase (terracota) of electron density for most intensive
electronic absorption transitions of 2f. The data for the corresponding interfragment charge
transfer (IFCT) are given below the figures. Diagonal values represent intraligand transitions, off-
diagonal values represent a charge transfer from “Donor” to “Acceptor”.

Donor

Pt

PRy
ADC'*

ADC™

Donor

Pt
ppy
ADCt
ADC™

Pt

0.009
0.025
0.001
0.000

Pt
0.004
0.023
0.001
0.001

So—S;
Acceptor
ppy ADCt
0.226 0.011
0.611 0.029
0.014 0.001
0.002 0.000

So—Ss3
Acceptor
ppy ADC'
0.114 0.005
0.696 0.032
0.037 0.002
0.025 0.001

ADC™
0.019
0.052
0.001
0.000

ADC™
0.008
0.047
0.003
0.002

Donor

Pt

ppy
ADC'*

ADCW

Donor

Pt
ppy
ADCt
ADCWN

Pt
0.027
0.002
0.002
0.003

)
—\

Pt
0.015
0.011
0.001
0.003

So—S2
Acceptor
ppy  ADC'
0.665  0.032
0.060  0.003
0.054 0.003
0.073 0.004

So—Ss
Acceptor
ppy  ADC*
0.398  0.056
0.288  0.041
0.037 0.005
0.082 0.011

ADC™N
0.056
0.005
0.005
0.006

ADC™
0.026
0.019
0.002
0.005
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o

e ®
DG s
S-S5 T1—So
Acceptor Acceptor
Donor Donor

Pt ppy ADCEC ADCN Pt ppy ADCC  ADCW
Pt 0.012 0.067 0.266 0.215 Pt 0.005 0.033  0.000 0.000
ppy 0.006 0.031 0.126 0.102 ppy 0.117 0.761  0.011 0.004
ADC®*  0.002 0.011 0.043 0.035 ADC*  0.003 0.021  0.000 0.000
ADC™  0.002 0.010 0.040 0.033 ADC™  0.006 0.037  0.001 0.000
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Table S4.18. Energies (eV) of selected frontier molecular orbitals for complexes 1a,c and 2a,c in DCE.

Orbital E, 3V E, sm*
la
LUMO+2 -0.55 -4426.80
LUMO+1 -0.99 -7949.37
LUMO -1.66 -13385.76
HOMO -5.21 -42007.44
HOMO-1 -5.71 -46036.99
HOMO-2 -5.98 -48262.47
2a
LUMO+2 -0.92 -7416.05
LUMO+1 -1.36 -10932.03
LUMO -1.99 -16032.62
HOMO -5.48 -44175.85
HOMO-1 -5.50 -44382.16
HOMO-2 -6.22 -50145.56
1c
LUMO+2 -0.95 -7668.44
LUMO+1 -1.04 -8353.20
LUMO -1.71 -13815.93
HOMO -5.78 -46603.24
HOMO-1 -6.01 -48484.14
HOMO-2 -6.48 -52232.76
2c
LUMO+2 -1.40 -11291.97
LUMO+1 -1.43 -11542.17
LUMO -2.10 -16952.22
HOMO -6.31 -50913.72
HOMO-1 -6.49 -52357.86
HOMO-2 -6.70 -53999.53
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Table S4.19. Composition (%) of Frontier MOs in terms of ligands and metals for 1a,c and

2a,c in DCE
HOMO LUMO
la
Pt 4.16 531
ppy 0.50 91.46
ADC™ 95.14 2.72
1c
Pt 37.59 5.34
ppy 51.15 90.25
ADCW 0.88 3.86
2a
Pt 2.41 4.87
ppy 0.29 90.74
ADC® 78.64 221
ADCW 18.66 2.18
2¢C
Pt 24.38 5.11
ppy 71.52 84.96
ADC* 3.31 4.16
ADCN 0.79 5.77

In order to explain the differences nature of the transition in complexes with NMe;
substituted, analysis of frontier molecular orbitals (FMO) for la and 2a and their
representative counterpart 1c¢ and 2c have been performed. Figure 6 shows the shape and
energy of these for 1a, 1c, 2a and 2c, on top of that FMO's compositions are given in Table
S5.19 and figs. S4.7-4.9. In all cases, the lowest unoccupied molecular orbitals (LUMOS)
are mostly dominated by the n* molecular orbitals on the ppy ligands, explaining the
observation of the minor impact of the nature of the auxiliary ligands on the computed
LUMO energies. The change of the substituent in the aryl ring of ACD ligands induces
minor effects on the electron densities of the LUMOs of complexes, in addition, it
significantly reshapes the electron density in the high occupied molecular orbitals
(HOMOs). For 1c and 2c the HOMOs are mainly located on the aryl ring of the
cyclometalated ligand (51%— 1c and 72% — 2c) and the platinum center (38% and 24%
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respectively), opposite for NMez-substituted complexes 1a and 2a the HOMOs are mainly
delocalized by the ® molecular orbitals on the aryl ring connected with the nitrogen atom
of diaminocarbene species (contribution of aryls > 95%), whereas the contribution of the
metal d orbitals is insignificant (<5%). In accordance with this, the electron-donor group
NMe;z produces a larger destabilization of HOMO over LUMO, which leads to less HOMO-
LUMO energy gaps. There is a correlation between the HOMO-LUMO energy difference
and the red-shifted absorption bands determined experimentally for 2a with electron-
donating NMez group relative to its counterpart 2c.
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LUMO+1 LUMO+2

LUMO HOMO

HOMO-1 HOMO-2

Figure S4.7. Selected frontier Molecular Orbitals for 1a in the DCE.
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LUMO+1 LUMO+2

HOMO-1 HOMO-2
Figure S4.8. Selected frontier Molecular Orbitals for 1c in the DCE.
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LUMO+1 LUMO+2

LUMO HOMO

HOMO-1 HOMO-2

Figure S4.9. Selected frontier Molecular Orbitals for 2a in the DCE.
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Figure S4.10. Selected frontier Molecular Orbitals for 2c in the DCE.
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Energy (eV)

Figure S4.11. Molecular orbital patterns for 1a, 1c, 2a and 2c based on their optimized So

geometries.

2a

2c

Figure S4.12. Comparison of DFT optimized geometries S1 (dark grey line) and triplet state T1

(blue line) of 2a in DCE.
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S5. OLED manufacturing
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Figure S5.1. Current density and luminance versus applied voltage for devices D1-D2, D10.
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Figure S5.2. Current density and luminance versus applied voltage for devices D3, D9, D13.
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Figure S5.3. Energy level diagram of used materials for devices D11-D13.

ITO/glass/PEDOT:PSS/Poly TPD/Pt(1a):CBP/TPBI/LIF:Al ITO/glass/PEDOT:PSS/PolyTPD/Pt(1b):CBP/TPBI/LiF:Al
T T T T T T T T T T T T T T T T T T
—aV
—oav
1,0 4 v 1,0 1 — 11V 4
——14v — 14V
——15v| A ——15V|
5 5 0,8
5 =
| _|
w w pg
3 -
N N
© ©
£ £ 044
—
<} s}
z z
0,2 1
0,0
T T T T T T T T T T T T T T T T T T
400 500 600 700 800 400 500 600 700 800
WL, nm WL, nm

Figure S5.4. EL spectra developing of D11 (right) and D12 (left) under different applied bias.
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Table S5.1. EL device performances reported for selected examples of luminescent platinum(ll)
diaminocarbene complexes.
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S6. NMR and HR ESI*-MS Spectra
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Figure S6.1. *TH NMR spectrum of [Pt(ppy)CI{CNC¢HsN(Me);}] S1a (CDCls, 400 MHz).
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Figure S6.2. *C{*H} NMR of [Pt(ppy)CH{CNCsH4sN(Me)2}] Sla (CDCls, 100 MHz).
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Figure S6.3. 1°°Pt NMR of [Pt(ppy)CI{CNCsHsN(Me).}] S1la (CDCls, 100 MHz).
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Figure S6.4. TH NMR spectrum of Pt(ppy){CN(p-Tol)}Cl] S1b (CDCls, 400 MHz).
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Figure S6.5. ®C{*H} NMR of Pt(ppy){CN(p-Tol)}ClI] S1b (CDCls, 100 MHz).
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Figure S6.6. °°Pt NMR of Pt(ppy){CN(p-Tol)}Cl] S1a (CDCl3, 100 MHz).
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Figure S6.7. 'H NMR spectrum of [Pt(ppy)CI{CNCsH4CI}] Sic (CDCls, 400 MHz).
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Figure S6.8. *.C{*H} NMR of [Pt(ppy)CH{CNCsH4CI}] Sic (CDCls, 100 MHz).
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Figure S6.9. 1Pt NMR of [Pt(ppy)CI{CNCsH4CI}] Sic (CDCls, 100 MHz)
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Figure S6.10. *TH NMR spectrum of [Pt(ppy)CI{CNCsH4Br}] S1d (CDCls, 400 MHz).
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Figure S6.12. C{*H} NMR of [Pt(ppy)CI{CNCsH4Brl}] Sid (CDCls, 100 MHz)
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Figure S6.13. 9Pt NMR of [Pt(ppy)CI{CNCsH4Br}] Sid (CDCls, 100 MHz)
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Figure S6.14. 'TH NMR spectrum of 1a (CDCls, 400 MHz).
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Figure $6.15. *C{*H} NMR of 1a (CDCls, 100 MHz).

200

79



-3619.03

-3150 -3200 -3250 -3300 -3350 -3400 -3450 -3500 -3550 -36f010( )—3650 -3700 -3750 -3800 -3850 -3900 -3950 -4000 -4050 -4100
ma,

Figure S6.16. **Pt NMR of 5a (CDCls3, 100 MHz).
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Figure S6.17. 'H NMR spectrum of 1b (CDCls, 400 MHz).
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Figure $6.18. *C{*H} NMR of 1b (CDCls, 100 MHz).
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Figure S6.19. Pt NMR of 1b (CDCl3, 100 MHz).
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Figure S6.20. *H NMR spectrum of 1c (CDCls, 400 MHz).
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Figure S6.21. *C{*H} NMR of 1c (CDCls, 100 MHz).
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Figure S6.22. Pt NMR of 1¢ (CDCls, 100 MHz).
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Figure S6.23. *TH NMR spectrum of 1d (CDCls, 400 MHz).
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Figure S$6.24. 3C{*H} NMR of 1d (CDCls, 100 MHz).
8
3
3
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
-3430 -3460 -3490 -3520 -3550 -3580 ‘ (-3)610 -3640 -3670 -3700 -3730 -3760
1 (MA

Figure S6.25. 1%pt NMR of 1c (CDCls, 86.015 MHz).
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Figure S6.26. 'H NMR spectrum of 1e (DMSO-dg, 400 MHz).
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Figure S6.27. *C{*H} NMR of 1e (DMSO-ds, 100 MHz).
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Figure S6.28. °°Pt NMR of 1e (DMSO-ds, 86.015 MHz).
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Figure S6.29. 'H NMR spectrum of 1f (CDCls, 400 MHz).
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Figure S6.30. BC{*H} NMR spectrum of 1f (CDCls, 376.50 MHz).
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Figure S6.31. 1Pt NMR of 1f (CDCls, 86.015 MHz).
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Figure $6.32. 1°F NMR of 1f (CDCls, 376.50 MHz).
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Figure S6.33. 'TH NMR spectrum of 2a (CDCls, 400 MHz).
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Figure S6.34. BC{*H} NMR of 2a (CDCls, 100 MHz).
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Figure S6.35. 1°°Pt NMR of 2a (CDCls, 86.015 MHz).
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Figure S6.60. HRESI*-MS of 1d with calculated isotopic distribution for C22H21N3OBrPt".
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Figure S6.61. HRESI*-MS of 1e with calculated isotopic distribution for C22H22N3zOCIIPt".
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Figure S6.66. HRESI*-MS of 2d with calculated isotopic distribution for Ca3HzsNsBr.O2Pt".

981.0452
: 982.0463
Intens. n#7
x104
981.0452 980.0431
6
983.0489
984.0494
L 985.0547
978.0430
s 9.9
i =
981.0447 caled. for C33H34N5l,0,Pt
N 982.0457
980.0423
24 y
983.0483
984.0484
4 985.0509
978.040% fﬁ,i'_"”’
855.1517 COARC aac earaars Copac e SR NAAC AT 1 £
413.2654 L
) SPUSRETIR WSSU TS U | etteria s s
250 500 750 1000 1250 1500 1750 2000 2250 miz

Figure S6.67. HRESI*-MS of 2e with calculated isotopic distribution for Ca3HzaNs1,02Pt".
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