Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

N, N', N"-tris(4-acetyl-aniline)

A solution of acetyl chloride (1.12g, 15mmol) and anhydrous aluminum chloride (1.12 g, 15mmol) in dry DCM (dichloromethane) was stirred for 15 minutes. In a nitrogen atmosphere, the mixture was slowly dripped into the DCM (80ml) solution of triphenylamine (1.22g, 5mmol), reaction for 12 hours under the condition of 273–278 K, after that, heated to 313K and continue to react for 12 hours, the resulting mixture was carefully quenched with ethyl alcohol. the organic solvents were evaporated in vacuo. The crude product was extracted three times by DCM, after that, combined organic extract and dried over MgSO4. The pure product was obtained by silica gel column chromatography, Yield 1.37 g (73.85 %); ¹H NMR (400 MHz, CDCl₃, 298K, ppm) δ = 2.60 (s, 9H), 7.18–7.16 (d, 6H), 7.93-7.91 (d, 6H).

N, N', N"-tris[4-(4,4,4-trifluoro-1,3-dioxobutyl)-aniline],

A mixture of sodium ethoxide, (1.09 g, 16.0mmol) N, N', N"-tris(4-acetyl-aniline) (1.85 g, 5 mmol) and ethyl trifluoroacetate (2.30 g, 16.2 mmol) in 30 mL ethyl alcohol. Then, reaction for 12 hours under the condition of ice water bath. The resulting solution was acidified to pH 3-4 using hydrochloric acid (1 M solution). The

crude product was extracted three times by EA (ethyl acetate), combined organic extract and dried over MgSO₄. Recrystallization with acetonitrile, yellow needle crystals were filtered and dried in vacuum, Yield 2.02 g (61.30 %); ¹H NMR (CDCl₃, 400 MHz, 298K, ppm): δ = 15.41 (s, 3H), 7.96–7.95 (d, 6H), 7.23–7.21 (d, 6H), 6.54 (s, 3H).

Tris(4-(5-(trifluoromethyl)-1H-pyrazol-3-yl) phenyl) amine, H₃L

A mixture of hydrazine hydrate, (1.30 g, 25.0mmol) and N, N', N"-tris[4-(4,4,4-trifluoro-1,3-dioxobutyl)-aniline] (1.65g, 2.5mmol) in 30 mL methyl alcohol. reaction for 12 hours under the condition of 333 K, after that, yellow precipitate was filtered and dried in vacuum, Yield 1.50g (92.76 %); ¹H NMR (DMSO, 400 MHz, 298K, ppm): $\delta = 7.14$ (s, 3H), 7.18–7.16 (d, 6H), 7.79–7.81 (d, 6H). ¹³C NMR (100 MHz, DMSO, 298K, ppm): δ 147.30, 144.14, 127.49, 124.73, 123.59, 120.92, 101.02.

Fig. S1 Synthetic route of H_3L .

Fig. S2 ¹H NMR spectrum of N, N', N"-tris(4-acetyl-aniline) in CDCl₃.

Fig. S3 ¹H NMR spectrum of N, N', N"-tris[4-(4,4,4-trifluoro-1,3-dioxobutyl)-aniline] in CDCl₃.

Fig. S4 ¹H NMR spectrum of H_3L in DMSO-d₆.

Fig. S5 13 C NMR spectrum of H_3L in DMSO-d₆.

Fig. S6 ESI-MS of H₃L in CH₃CN.

Fig. S7 The ¹H NMR spectrum of 1 in D_2O at 298 K.

Fig. S8 The ¹H NMR spectrum of 1a in CD₃CN at 298 K.

Fig. S9 The 13 C NMR spectrum of 1a in CD₃CN at 298 K.

Fig. S10 The ¹H NMR spectrum of 2 in D_2O at 298 K.

Fig. S11 The ¹H NMR spectrum of **2a** in CD_3CN at 298 K.

Fig. S12 The ¹³C NMR spectrum of 2a in CD₃CN at 298 K.

Fig. S13 The ¹H NMR spectrum of 3 in D_2O at 298 K.

8.820 8.801 8.784 8.764	.441 .427 .347 .347 .325 .325	8.114 8.0697 7.8847 7.8863 7.789 7.7754 7.7754 7.754	1.247	5.882 5.860
			Ĩ	Ň

Fig. S14 The ¹H NMR spectrum of 3a in CD₃CN at 298 K.

Fig. S15 The ¹³C NMR spectrum of **3a** in CD₃CN at 298 K.

Fig. S16 The 1 H NMR spectra of H₃L (a), 1 (b), 2 (c), 3 (d) in D₂O at 298K.

Fig. S17 The ¹H NMR spectra of H_3L (a), 1a (b), 2a (c), 3a (d) in CD₃CN at 298K.

Fig. S18 ¹H-¹H COSY spectrum of 1a in CD₃CN at 298 K.

Fig. S19 1 H- 1 H COSY spectrum of **2**a in CD₃CN at 298 K.

Fig. S20 ¹H-¹H COSY spectrum of 3a in CD₃CN at 298 K.

Fig. S21 ESI-MS spectra of 1a in CH₃CN; the inset shows the isotopic distribution of the species $[1a-2PF_6^-]^{2+}$. (cal. 1720.78)

Fig. S22 ESI-MS spectra of 2a in CH₃CN; the inset shows the isotopic distribution of the species [2a-2PF₆⁻]²⁺. (cal. 1801.78)

Fig. S23 Changes in fluorescent intensity for H_3L (1.0×10⁻⁵ M) in CH₃CN/H₂O (1:2, v/v) upon addition of different anions (Na⁺ salts in H₂O).

Fig. S24 PL emission photograph of 1a, 2a and 3a before and after addition of HSO₃⁻.

Fig. S25 Changes in fluorescent intensity for 1a (1.0×10^{-5} M) in CH₃CN/H₂O (1:2, v/v) upon addition of different anions (Na⁺ salts in H₂O).

Fig. S26 Fluorescence spectra of 1a in CH_3CN/H_2O (1:2, v/v) for various concentrations of HSO_3^- .

Fig. S27 Linear plot of the enhancement coefficients of 1a suspensions for sensing of HSO_3^- .

Fig. S28 Anti-interference ability of 1a for luminescent sensing HSO₃⁻

Fig. S29 Linear plot of the enhancement coefficients of 2a suspensions for sensing of HSO_3^- .

Fig. S30 Changes in fluorescent intensity for 3a (1.0×10^{-5} M) in CH₃CN/H₂O (1:2,

v/v) upon addition of different anions (Na⁺ salts in H₂O).

Fig. S31 Fluorescence spectra of 3a in CH₃CN/H₂O ((1:2, v/v) for various concentrations of HSO₃⁻.

Fig. S32 Linear plot of the enhancement coefficients of 3a suspensions for sensing of HSO_3^- .

Fig. S33 Anti-interference ability of 3a for luminescent sensing HSO₃⁻

Fig. S34 Photographs of strips of the luminescent test paper of 1a and 3a after exposure to various anions under a UV lamp ($\lambda_{ex} = 365$ nm).

Fig. S35 ¹H NMR spectra of H_3L (a), 1 (b), 1 + NaHSO₃ (c) in DMSO-d₆.

Fig S36 ¹H NMR spectra of H_3L (a), 2 (b), 2 + NaHSO₃ (c) in DMSO-d₆.

Fig. S37 ¹H NMR spectra of H_3L (a), 3 (b), 3 + NaHSO₃ (c) in DMSO-d₆.

Fig. S38 Enhancement effect of various gas species on the fluorescence of 2a.

Fig. S39 Enhancement effect of various gas species on the fluorescence of 3a.

Fig. S40 Photographs of strips of the luminescent test paper of 2a and 3a after exposure to various gases under a UV lamp ($\lambda_{ex} = 365$ nm).

Fig. S41 Detection of HSO₃⁻ in practical water samples in 1a: a) deionized water, b) tap water, c) sea-water, and d) lake water.

Fig. S42 Detection of HSO₃⁻ in practical water samples in **3a**: a) deionized water, b) tap water, c) sea-water, and d) lake water.

Fig. S43 Single crystal structures of 1.

Fig. S44 Cytotoxicity test of HSO₃⁻, 1a, 2a and 3a in Hela cells.

Fig. S45 Fluorescence images of HeLa cells incubated with or without probe 2a (10 μM) and HSO₃⁻ (0 eq or12 eq); (a), (d) and (g) Bright field images;(b), (e) and (h) fluorescent images from the blue channel (from 429–474 nm) of laser scanning confocal microscope; (c), (f) and (i) Merge images.

Fig. S46 Fluorescence images of HeLa cells incubated with or without probe 3a (10 μ M) and HSO₃⁻ (0 eq or12 eq); (a), (d) and (g) Bright field images;(b), (e) and (h) fluorescent images from the blue channel (from 429–474 nm) of laser scanning confocal microscope; (c), (f) and (i) Merge images.

	$1.6PF_6^-$
Formula	$C_{166}H_{198}F_{48}N_{26}O_{30}P_5Pd_6S_7$
FW	4967.16
crystal system	Monoclinic
space group	C12/a1
a [Å]	55.0704(4)
b [Å]	31.5923(2)
c [Å]	26.9571(2)
	90
β[°]	115.8350(10)
γ [°]	90
V [Å3]	42212.4(6)
Z	8
ρ calcd, [Mg/cm ³]	1.563
μ [mm ⁻¹]	6.026
F(000)	20088
θ max	2.157 to 77.116
reflections collected	301265
Independent reflections	42932 []R(int)= 0.0588
goodness-of-fit on F ²	1.013
$R_1, wR_2 [I \ge 2\sigma (I)]$	$R_1 = 0.1317, wR_2 = 0.3177$
R_1, wR_2 [all data]	R ₁ =0.1395, wR ₂ =0.3255

Table S1 Crystallographic data for complexes $1 \cdot 6 PF_6^-$

Bond		Bond	
Dist [Å]		Dist [Å]	
Pd(1)-N(2)	2 009(10)	Pd(5)-N(14)	2 009(10)
Pd(1)-N(9)	2.009(10) 2.004(10)	Pd(5)-N(23)	2.009(10) 2.001(8)
Pd(1)-N(15)	1.004(10)	Pd(5)-N(24)	2.001(0) 2.001(11)
Pd(1)-N(16)	2.003(10)	Pd(6)-N(7)	2.001(11) 2.029(10)
Pd(2) N(3)	2.003(10) 2.013(10)	Pd(6) N(13)	2.029(10) 2.010(0)
Pd(2) N(10)	2.013(10) 2.017(11)	Pd(6) N(25)	2.019(9) 2.020(0)
Pd(2) = N(10) Pd(2) = N(17)	2.017(11) 1.071(0)	Pd(0)-N(23) Pd(6) N(26)	2.020(9) 2.011(0)
Pu(2)-IN(17) Pd(2) N(18)	1.9/1(9) 2.026(10)	P(0) = N(20) N(4) = N(5)	2.011(9) 1.229(11)
Pd(2) = N(10)	2.020(10)	N(4)-N(3) N(12) N(14)	1.320(11) 1.360(11)
Pu(3)-In(4) Pd(2) N(20)	2.028(9) 2.022(10)	N(13)-N(14) N(6) N(7)	1.309(11) 1.264(11)
Pd(3)-IN(20) Pd(2) N(10)	2.023(10) 2.024(0)	N(0) - N(1)	1.304(11) 1.220(12)
Pd(3)-N(19)	2.024(9)	N(9)-N(10)	1.320(12)
Pd(3)-N(12)	2.051(8)	N(11)-N(12)	1.31/(11) 1.205(11)
Pd(4)-N(5)	2.029(9)	N(2)-N(3)	1.385(11)
Pd(4)-N(11)	2.038(8)	Pd(1)-Pd(2)	3.0147(11)
Pd(4)-N(21)	2.009(7)	Pd(3)-Pd(4)	3.0896(10)
Pd(4)-N(22)	2.005(8)	Pd(5)-Pd(6)	3.0530(10)
Pd(5)-N(6)	2.009(12)		
Bond Angel[°]		Bond Angel[°]	
N(2)-Pd(1)-Pd(2)	66.7 (2)	N(21)-Pd(4)-Pd(3)	117.9(2)
N(9)-Pd(1)-Pd(2)	65.6(3)	N(21)-Pd(4)-N(5)	97.8(3)
N(9)-Pd(1)-N(2)	85.5(4)	N(21)-Pd(4)-N(11)	177.2(3)
N(15)-Pd(1)-Pd(2)	112.7(3)	N(22)-Pd(4)-Pd(3)	110.8(2)
N(15)-Pd(1)-N(2)	97.1(4)	N(22)-Pd(4)-N(5)	174.2(3)
N(15)-Pd(1)-N(9)	176.1(4)	N(22)-Pd(4)-(N11)	96.2(4)
N(15)-Pd(1)-N(16)	80.3(4)	N(22)-Pd(4)N-(21)	81.4(3)
N(16)-Pd(1)-Pd(2)	110.2(3)	N(6)-Pd(5)-Pd(6)	65.3(2)
N(16)-Pd(1)-N(2)	175.0(4)	N(14)-Pd(5)Pd-(6)	64.6(2)
N(16)-Pd(1)-N(9)	96.8(4)	N(14)-Pd(5)-N(6)	84.8(4)
N(3)-Pd(2)-Pd(1)	65.5(3)	N(23)-Pd(5)-Pd(6)	111.5(3)
N(3)-Pd(2)-N(10)	84.7(5)	N(23)-Pd(5)-N(6)	175.6(4)
N(3)-Pd(2)-N(18)	176.6(6)	N(23)-Pd(5)-N(14)	96.5(4)
N(10)-Pd(2)-Pd(1)	64.5(3)	N(23)-Pd(5)-N(24)	80.2(5)
N(10)-Pd(2)-N(18)	98.6(5)	N(24)-Pd(5)-Pd(6)	115.9(3)
N(17)-Pd(2)-N(3)	96.0(5)	N(24)-Pd(5)-N(6)	98.5(5)
N(17)-Pd(2)-N(10)	176.7(4)	N(24)-Pd(5)-N(14)	176.6(6)
N(17)-Pd(2)-N(18)	80.6(5)	N(7)-Pd(6)-Pd(5)	65.3(3)
N(17)-Pd(2)-Pd(1)	112.8(3)	N(13)-Pd(6)-Pd(5)	66.0(2)
N(18)-Pd(2)-Pd(1)	115.3(3)	N(13)-Pd(6)-N(7)	84.3(4)
N(4)-Pd(3)- Pd(4)	64.0(2)	N(13)-Pd(6)-N(25)	174.2(3)
N(4)-Pd(3)-N(12)	83.9(4)	N(25)-Pd(6)-Pd(5)	109.0(2)
N(12)-Pd(3)-Pd(4)	64.3(3)	N(25)-Pd(6)-N(7)	96.4(4)
N(19)-Pd(3)-Pd(4)	115.7(3)	N(26)-Pd(6)-Pd(5)	119.4(2)
N(19)-Pd(3)-N(4)	96.7(4)	N(26)-Pd(6)-N(7)	175.2(4)
N(19)-Pd(3)-N(12)	179.4(4)	N(26)-Pd(6)-N(13)	98.1(4)
N(20)-Pd(3)-Pd(4)	117.1(3)	N(26)-Pd(6)-N(25)	81.6(4)

Table S2. Selected bond distances (Å) and angles (°) of complex $1.6PF_6^{-.}$

N(20)-Pd(3)-N(4)	177.9(4)
N(20)-Pd(3)-N(12)	98.2(4)
N(20)-Pd(3)-N(19)	81.3(4)
N(5)-Pd(4)-Pd(3)	64.4(2)
N(5)-Pd(4)-N(11)	84.7(4)
N(11)-Pd(4)-Pd(3)	64.2(2)