Supporting Information

Nanoscale control and tri-element co-doping toward 4.6V LiCoO₂ with excellent rate capability and long-cycling stability for lithium-ion batteries

Xun Wang^a, Zixuan Fang^a, Xin Hu^a, Bowen Fu^a, Tingting Feng^{a,b}, Teng Li^{a*}, and Mengqiang

Wu^{a*,b}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China

^b The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

*Emails: <u>mwu@uestc.edu.cn</u> (Mengqiang Wu); <u>lit1990@uestc.edu.cn</u> (Teng Li)

Figure S1. (a) Interplanar crystal spacings of crystal plane (110) and corresponding fast Fourier transformation (FFT) calculated from the blue marked regions of CDLCO; (b) TEM image of CDLCO together with the measured lattice spacing for the marked region; (c) TEM image of CDLCO together with the measured lattice spacing for another marked region.

Figure S2. SEM image of nano-CoOOH.

Figure S3. Materials synthesized with different precursors under the same reaction conditions: (a) CDLCO by nano-CoOOH precursors, (b) ATMLCO by Co₃O₄ precursors.

Figure S4. SEM and EDS elemental mappings of Co, Ti, Al, Mg: (a-a4) CDLCO, (b-b4) ATMLCO.

Figure S5. The equivalent circuit models used for the fitting of EIS data.

Samples	ICP wt%			
~ million	Al	Mg	Ti	
BLCO	0	0	0	
CDLCO	0.4908	0.1083	0.0971	

Table S1. The doping concentration of Al, Mg, Ti in BLCO and CDLCO obtained from ICP.

Table S2. Atoms occupancy of BLCO from Rietveld refinement by the XRD.

Atom	Site	X	У	Z	Occupancy
Li	3a	0	0	0	1
Со	3b	0	0	0.5	1
0	6c	0	0	0.24454	1

 Table S3. Atoms occupancy of CDLCO from Rietveld refinement by the XRD.

Atom	Site	X	У	Z	Occupancy
Li	3a	0	0	0	0.996
Mg	3a	0	0	0	0.004
Со	3b	0	0	0.5	0.980
Al	3b	0	0	0.5	0.018
Ti	3b	0	0	0.5	0.002
Ο	6c	0	0	0.2437	1

Modified strategies	Current density	Cycle number	Capacity retention	Ref.
Mg-doping	$270 \text{ mA} \cdot \text{g}^{-1}$	100	84% (158 mAh·g ⁻¹)	1
W-doping	$274 \text{ mA} \cdot \text{g}^{-1}$	100	72.3% (146 mAh·g ⁻¹)	2
Mn doping	$185 \text{ mA} \cdot \text{g}^{-1}$	100	55% (112.2 mAh·g ⁻¹)	3
Ni-Mn co-doping	$185 \text{ mA} \cdot \text{g}^{-1}$	100	52% (103.48 mAh·g ⁻¹)	3
Al-Zn co-doping	$185 \text{ mA} \cdot \text{g}^{-1}$	500	65% (119.6 mAh·g ⁻¹)	4
Al-doping, F coating	27.4 mA·g ⁻¹	200	81.8% (170.7 mAh·g ⁻¹)	5
Mg doping, ZrO _x F _y coating	155 mA·g ⁻¹	100	76.3% (136.6 mAh·g ⁻¹)	6
Ti, Mg, Al co-doping	$137 \text{ mA} \cdot \text{g}^{-1}$	100	86% (174 mAh·g ⁻¹)	7
Al-Ti bulk co- doping, Mg surface	$70 \text{ mA} \cdot \text{g}^{-1}$	200	78% (169.9 mAh·g ⁻¹)	8
doping				
This work	1 C (1 C=150 mA·g ⁻¹)	100	94.3% (183.5 mAh·g ⁻¹)	
This work	5 C	200	98.7% (146.1 mAh·g ⁻¹)	
This work	5 C	600	91% (134.8 mAh·g ⁻¹)	

Table S4. Comparison of electrochemical properties of the reported $LiCoO_2$ -based LIBs at the high cut-off voltage of 4.6 V.

References

- Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu, S. Yu, Z. Hu, C.-T. Chen, G. Jiang, H. Gu, H. Lin, W. Luo and Y. Huang, *Angew. Chem. Int. Edit.*, 2021, 60, 4682-4688.
- 2. J.-N. Zhang, Q.-H. Li, Q. Li, X.-Q. Yu and H. Li, *Chinese Phys. B*, 2018, **27**, 088202.
- 3. Y. Wang, T. Cheng, Z. Yu, Y. Lyu and B. Guo, J. Alloys Compd., 2020, 842, 155827.
- T. Cheng, Z. Ma, R. Qian, Y. Wang, Q. Cheng, Y. Lyu, A. Nie and B. Guo, *Adv. Funct. Mater.*, 2021, **31**, 2001974.
- J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. L. Zhuang and Y. Lu, *Nat. Commun.*, 2018, 9, 4918.
- Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan and J. Wang, J. Alloys Compd., 2015, 621, 212-219.
- J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, X.-Q. Yang, X. Huang, L. Chen and H. Li, *Nat. Energy*, 2019, 4, 594-603.
- L. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, X. Sun, A. Du, X. Zhou and G. Cui, *Adv. Sci.*, 2019, 6, 1900355.