Supplementary information

A ratiometric luminescence sensing platform based on lanthanide-

based silica nanoparticles for selective and sensitive detection of Fe³⁺

and Cu²⁺ ions

Meng-Yao Zhang,^a Feng-Ying Yi,^a Qing-Zhong Guo,^a Fa-Liang Luo,^b Lan-Jun Liu^{*a, c} and Jun-Fang Guo^{*a}

a. Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

b. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.

c. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430205, China.

* Corresponding author: Lanjun Liu; Junfang Guo

E-mail: witljliu@sina.com; junfangguo@aliyun.com

Fig. S1. ^{29}Si MAS NMR spectra of SiO_2 and SiO_2@NH_2 nanoparticles.

Fig. S2. Optical image of SiO₂@Tb nanocomposites under a UV lamp (254 nm).

Fig. S3. Emission spectra (λ_{ex} =237 nm) of the suspension of SiO₂ nanoparticles (red) and SiO₂@COOH (black).

Fig. S4. Emission spectra of SiO₂@Tb suspensions (λ_{ex} =237 nm). (a) SiO₂@Tb powder storage 0 or 30 days. (b) the suspension of SiO₂@Tb at 6-hour intervals in a day. (inset: Luminescence intensity of SiO₂@Tb at 545 nm and 461 nm and the corresponding intensity ratio of I₅₄₅/I₄₆₁). The SiO₂@Tb nanoparticles were immersed into water and ultrasonicated to obtain a stable suspension before fluorescence measurement.

Fig. S5. (a) Emission spectra of the suspension of $SiO_2@Tb$ under the excitation from 225 to 253 nm. (b) Luminescence intensity of 545 nm and 461 nm of $SiO_2@Tb$ (inset: plot of the intensity ratio of I_{545} and I_{461} vs excitation wavelength).

Fig. S6. Luminescence intensitiv of 545 nm and 461 nm of $SiO_2@Tb$ upon the addition of various metal ions under excitation at 237 nm.

Fig. S7. Luminescence intensitiv of 545 nm and 461 nm of SiO₂@Tb upon gradual addition of Cu²⁺ ions under excitation at 237 nm (0-40 μ M).

Fig. S8. Intensity ratio of I_{545}/I_{461} vs Cu^{2+} ions concentration in the range of 0-40 $\mu M.$

Fig. S9. (a) Photoluminescence spectra (λ_{ex} = 237 nm) and (b) the corresponding Stern– Volmer plots of the suspension of SiO₂@Tb upon progressive addition of Fe³⁺ aqueous solution (0-14 µM)

Fig. S10. (a) Photoluminescence spectra (λ_{ex} = 237 nm) and (b) the corresponding Stern–Volmer plots of the suspension of SiO₂@Tb upon progressive addition of the Cu²⁺ aqueous solution (0-14 µM).

Fig. S11. Fluorescent excitation spectrum (Dotted line) and emission spectrum (Dashed line) of the suspension of SiO₂@Tb and the absorption spectra of various metal ions (Solid line).

Fig. S12. Optical images of (a) SiO₂@Tb suspension before and after treatment with Fe^{3+} and Cu^{2+} ion under a UV lamp (from left to right, $\lambda = 254$ nm) and (b) corresponding images of SiO₂@Tb nanocomposites in dry solid state.

Fig. S13. XPS spectrum of SiO₂@Tb.

Fig. S14. Decay curves for $Tb^{3+} {}^{5}D_{4} \rightarrow {}^{7}F_{5}$ emission in aqueous dispersion of SiO₂@Tb (a) and treated with Fe³⁺ (b) and Cu²⁺ (c).

	Materials	Probe	LOD	FL Ratios	Refs.
1	HPEI-CDs	Dual emission probe	0.47 μM	I ₃₂₁ /I ₃₈₂	[1]
2	C-dots	Dual emission probe	0.16 μΜ	I ₃₅₀ /I ₅₇₀	[2]
3	C-dots	single emission probe	1.68 µM	١	[3]
4	NS-CDs	Dual emission probe	0.56 μM	I ₄₈₀ /I ₆₅₀	[4]
5	B-CQD/CdTe-Eu ³⁺	Dual emission probe	0.053 μΜ	I ₄₁₀ /I ₅₃₀	[5]
6	Neo-CDs	single emission probe	0.854 μM	١	[6]
7	R6G-CD	Dual emission probe	0.727 μM	I ₅₅₀ /I ₄₅₅	[7]
8	GN-CDs	Dual emission probe	0.8 μM	I ₄₇₀ /I ₅₇₀	[8]
9	SiO₂@Tb	Dual emission probe	0.75 μΜ	I ₅₄₅ /I ₄₆₁	This work

Table S1 Sensitivity of various nanosensors for detection of Fe³⁺

- [1] Wang B, Zhou X, Lin J, et al. Concentration-modulated dual-excitation fluorescence of carbon dots used for ratiometric sensing of Fe³⁺. Microchemical Journal, 2021, 164: 106028.
- [2] An Q, Lin Q, Huang X, et al. Electrochemical synthesis of carbon dots with a Stokes shift of 309 nm for sensing of Fe³⁺ and ascorbic acid. Dyes and Pigments, 2021, 185:108878.
- [3] Peng Z. Sensitive, selective and reliable detection of Fe³⁺ in lake water via carbon dots-based fluorescence assay. Molecules, 2022, 27(19): 6749.
- [4] Liang C, Xie X, Shi Q, et al. Nitrogen/sulfur-doped dual-emission carbon dots with tunable fluorescence for ratiometric sensing of ferric ions and cell membrane imaging. Applied Surface Science, 2022, 572: 151447.
- [5] Huang M, Tong C. A dual-emission ratiometric fluorescence probe for highly selective and simultaneous detection of tetracycline and ferric ions in environmental water samples based on a boron-doped carbon quantum dot/CdTe-Eu³⁺ composite. Environmental Science: Nano, 2022, 9: 1712-1723.
- [6] Jadhav R W, Khobrekar P P, Bugde S T, et al. Nanoarchitectonics of neomycinderived fluorescent carbon dots for selective detection of Fe³⁺ ions. Analytical Methods, 2022,14: 3289-3298.
- [7] Deng M, Sha W, Liang C, et al. A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe³⁺ in aqueous solution. RSC Advances, 2016, 6(32): 26936-26940.
- [8] Pang S, Liu S. Dual-emission carbon dots for ratiometric detection of Fe³⁺ ions and acid phosphatase. Analytica Chimica Acta, 2020, 1105: 155-161.

	Materials	Probe	LOD	FL Ratios	Refs.
1	GQD	Single emission probe	0.226 μM	/	[1]
2	AuNPs	Single emission probe	5.8 μM	١	[2]
3	Amino- CQDs	single emission probe	93 nM	١	[3]
4	Nitrogen-doped CQDs	single emission probe	0.16 μM	١	[4]
5	BSA-capped AuNCs	single emission probe	10 nM	١	[5]
6	NCDs	Dual emission probe	17.7 nM	I ₅₁₅ /I ₄₅₄	[6]
7	Eu-DPA–CQDs	Single emission probe	6 nM	١	[7]
8	CQDs	Dual emission probe	0.076 μM	I ₅₆₂ /I ₄₄₆	[8]
9	GSH@CDs-Au NCs	Dual emission probe	2.59 μM	I ₄₃₀ /I ₇₀₀	[9]
10	MOF/ CdTe QDs	Dual emission probe	0.26 ng mL ⁻¹	I ₄₂₅ /I ₆₀₅	[10]
11	QDC	Dual emission probe	34.9 nM	I ₄₃₀ /I ₆₀₀	[11]
12	SiO₂@Tb	Dual emission probe	0.91 μM	I ₅₄₅ /I ₄₆₁	This work

Table S2 Sensitivity of various nanosensors for detection of Cu2+

- Wang F, Gu Z, Lei W, et al. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors and Actuators B: Chemical, 2014, 190: 516-522.
- [2] Lin S, Liu S, Dai G, et al. A click-induced fluorescence-quenching sensor based on gold nanoparticles for detection of copper(II) ion and ascorbic acid. Dyes and Pigments, 2021, 195: 109726.
- [3] Kalaiyarasan G, Joseph J. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive aminoterminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Analytical and bioanalytical chemistry, 2019, 411(12): 2619-2633.
- [4] Hu C, Zhu Y, Zhao X. On-off-on nanosensors of carbon quantum dots derived from coal tar pitch for the detection of Cu²⁺, Fe³⁺, and L-ascorbic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 250: 119325.
- [5] Wu J, Jiang K, Wang X, et al. On–off–on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C. Microchimica Acta,

2017, 184(5): 1315-1324.

- [6] Guo, J. Liu, A. Zeng, Y. et al. Noval dual-emission fluorescence carbon dots as a ratiometric probe for Cu²⁺ and ClO⁻ detection. Nanomaterials 2021, 11: 1232.
- [7] Li Y, Liu D, Wang Y Q, et al. Eu³⁺-functionalized CQD hybrid material: synthesis, luminescence properties and sensing application for the detection of Cu²⁺. Materials Advances, 2021, 2: 3346-3352.
- [8] Han Z, Nan D, Yang H, et al. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu²⁺ and glutathione. Sensors and Actuators B: Chemical, 2019, 298: 126842.
- [9] Wu J, Li R, Liu S. A novel dual-emission fluorescent probe for ratiometric and visual detection of Cu²⁺ ions and Ag⁺ ions. Analytical and Bioanalytical Chemistry, 2022, 414(9): 3067-3075.
- [10] Yang Y, Liu W, Cao J, et al. On-site, rapid and visual determination of Hg²⁺ and Cu²⁺ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTe QDs. Food Chemistry, 2020, 328 127119.
- [11] Manna M, Roy S, Bhandari S, et al. A dual-emitting quantum dot complex nanoprobe for ratiometric and visual detection of Hg²⁺ and Cu²⁺ ions. Journal of Materials Chemistry C, 2020, 8(21): 6972-6976.