Supplementary Information

Ultrasmall Co₃O₄ nanoparticles as long-lived high-rate lithium-ion battery anode

Ping Wan, ^a Yang Si, ^a Shuang Zhu, ^a Changda Wang, ^a Yuyang Cao, ^a Zhen Yu, ^b Wenjie Wang, ^a Chen Chen, ^a Wangsheng Chu, *^a and Li Song, ^a

- a. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
- b. Hefei Institute for Advanced Research, Anhui University of Science and Technology, Hefei, Anhui 231131, P.R. China.

E-mail: chuws@ustc.edu.cn

Keywords: cobalt oxide, ultrasmall nanoparticles, particle size effect, lithium ion batteries

1. Experimental

1.1 Synthesis of the precursor Co-PBA nanoparticles

In a typical procedure, 3 mmol $K_3Co(CN)_6$, 5.6 g PVP (K40) and 6 mmol $CoCl_2 \cdot 6H_2O$ were dissolved into a mixed solution of 25 mL ethanol and 75 mL deionized water. The obtained pink solution was kept away from light for 24 h after stirred for 2 h. Then it was centrifuged and washed for several times with deionized water and ethanol and finally dried overnight at 100 °C under vacuum.

1.2 Synthesis of the ultrasmall S-Co₃O₄ nanoparticles

The collected precursor Co-PBAs were crystallized at 360 °C for 1 h at a heating rate of 1 °C min⁻¹ under an air atmoparticle.

By the way, the comparison sample $C-Co_3O_4$ (commercial Co_3O_4) was just purchased from the Internet (Sinopharm Chemical Reagent Co., Ltd., SP).

1.3 Materials characterization

The XRD patterns were recorded on a D8-Advance power diffractometer equipped with a Cu K α radiation source ($\lambda = 1.54178$ Å). The morphology of these samples was characterized by a field emission scanning electron microscopy (15 kV, JEOL, JSM-6700F) and TEM (JEOL JEM2010). Thermogravimetry (TG) measurement was carried out on a NETZSCH TG 209F1 Libra instrument in air flux at a scan rate of 10 °C min⁻¹. Brunauer-Emmett-Teller (BET) surface areas were measured using Tristar II 3020 instrument by nitrogen adsorption at 77 K. Raman spectra were obtained from a LabRamHR using an argon ion laser with a wavelength of 785 nm. Co K-edge X-ray absorption fine structure (XAFS) was recorded at the 1W2B beamline of the Beijing Synchrotron Radiation Facility (BSRF, Beijing). X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were both analysed by the ATHENA software package. To further obtain the magnitudes of the EXAFS spectra in R-space (Å), the extracted EXAFS signal was Fourier-transformed in k-ranges of 2.4-12.5 Å⁻¹ by using a Hanning window function after weighted by k^2 . The lengths of actual bond are approximately 0.2-0.4 Å longer because the Fouriertransformed peaks were not phase corrected. The soft X-ray absorption spectroscopy

(s-XAS) of Co L-edge was collected at the BL12B-a (MCD) line station of the Hefei Synchrotron Radiation Facility (HALF). To get the desired electrodes, the coin cells, which were charged or discharged to the desired cut-off voltages, have been disassembled by an electric crimping machine (MTI Co.). Finally, electrodes were washed with dimethyl carbonate (DMC) and sealed by a 3 M sellotape in Ar atmoparticle after drying. The electrodes for XAFS and s-XAS were collected after fully charged or discharged for three or four cycles.

1.4 Electrochemical measurements

The battery tests were carried out in a half-cell configuration. Lithium disc was used as a counter electrode to assemble the CR2032-type coin cells, and all the processes were carried out in a glovebox filled with argon (MBraun, Germany). The working electrode consists of active materials, conductivity agent (Ketjenblack), and polymer binder (polyvinylidene fluoride, PVDF) with a weight ratio of 7:2:1. After mixed fully in N-methyl-2-pyrrolidinone, the obtained slurry was casted on Cu foil and dried at 110°C under vacuum overnight. After drying, slice to obtain circular electrodes with a diameter of 16 mm. The mass loading of the active material was 0.5-1 mg cm⁻². The electrolyte was a solution of 1 M LiPF₆ in ethylene carbonate/dimethyl carbonate (EC/DMC, 1:1 in weight). Whatman Glass Microfibre Filter (Grade GF/D) were used as separator. The electrochemical performance of the cells was assessed on a Land CT2001A cell test system (Wuhan, China) in the range of 0.01-3 V (vs. Li⁺/Li). Cyclic voltammetry (CV) was measured from 0.01 to 3 V (vs. Li⁺/Li) at the scan rate of 0.2 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) testing with an amplitude of 10 mV from 10⁵ Hz to 0.01 Hz. EIS and CV were both obtained on a CHI660D (Chenhua, Shanghai) electrochemical workstation.

2. Rusults and discussion

Figure S1. Diagrammatic sketch of synthesis process for S-Co₃O₄ spinel sample.

Figure S2. (a) SEM image, (b) XRD pattern and (c) TG curves of the precursor Co-PBA nanoparticles.

As shown in Fig. S2b, Co-based Prussian blue analogues (Co-PBA) can be indexed as a typical face-centered cubic structure (JCPDS no. 52-1907) with no impurity phase. Thermogravimetric (TG) characteristic (Fig. S2c) was employed to determine the optimum calcination temperature of the precursor. With temperature rising, the first mass drop occurs below 160 °C, corresponding to the loss of the adsorbed and interstitial water. The second drop occurs at 330-355 °C, corresponding to the phase transition to oxide. At subsequent temperatures up to 800 °C, the substance stabilizes

as Co_3O_4 . Take hint from the TG data, phase-pure Co_3O_4 was successfully prepared by annealing the precursor at 360 °C.

Figure S3. Structural and morphology characterization of the C-Co3O4. (a) Rietveld refinement of the PXRD data (a=b=c=8.066 Å); (b) TEM image and a magnified

view; XPS analysis of (c) Co 2p and (b) O 1s.

Figure S4. Electrochemical performance and kinetic analysis of C-Co₃O₄ forlithium storage behavior. (a) Charge/discharge curves at 1 A g⁻¹; (b) CV data at 0.2 mV s⁻¹;
(c) CV curves obtained with various scan rates; (d) The calculated contribution ratio of the capacitive and diffusion-controlled capacities at different scan rates.

The electrochemical reactions are summarized as follow:

Discharge: $Co_3O_4 + 8Li^+ + 8e^- \rightarrow 4Li_2O + 3Co$

Charge:
$$4Li_2O + 3Co \rightarrow Co_3O_4 + 8Li^+ + 8e^-$$

The theoretical capacity of Co_3O_4 is 890 mAh g⁻¹. The calculation is the following: C=nF/3.6M, where C is the theoretical specific capacity, n is the electron transfer number (n=8), F is the Faraday constant (F = 96485 C mol⁻¹), and M is the relative molecular mass (M=240.8 g mol⁻¹).

Figure S5. The impedance spectra of $S-Co_3O_4$ anode and $C-Co_3O_4$ anode.

Figure S6. (a) Cycling performance at 1 A g^{-1} of both S-Co₃O₄ and C-Co₃O₄; (b)

Cycling performance of S-Co₃O₄ at 10 A g⁻¹ and 1 A g⁻¹.

As for the performance at 1 A g^{-1} in Fig. S6a, for S-Co₃O₄ electrode, a splendid electrochemical performance could also be found until the 510th cycle with over 610 mAh g^{-1} capacity. Then the capacity started to decline, and finally exhibited 249.7 mAh g^{-1} at the 2000th cycle. The capacity of C-Co₃O₄ is evidently worse than that of S-Co₃O₄, which is also because that the large micro size brought less active sites and more serious structure collapse. Additionally, the steady capacity for S-Co₃O₄ electrode at 10 A g^{-1} at the 2000th cycle (511.2 mAh g^{-1}) is amazingly superior than that at 1 A g^{-1} at the same cycle (249.7 mAh g^{-1} , Fig. S6b), which may be the result of different distribution of components in SEI at different current densities (Fig. S10), verify the superiority of the long-cycle high-rate application of S-Co₃O₄.

Figure S7. Rate performance of (a) S-Co₃O₄ and (b) C-Co₃O₄.

The rate performance of the S-Co₃O₄ electrode is measured at 0.2, 0.3, 0.5, 1, 2, 5, 10, 0.5 and 0.2 A g⁻¹ every ten cycles (Fig. S7a⁺), and the reversible capacities are 1303.0, 936.4, 626.6, 360.1, 186.9, 98.7, 61.1, 334.7 and 572.4 mAh g⁻¹, respectively. As for the C-Co₃O₄ electrode, it presents a reversible capacity of 1121.9, 87.5, 35.1, 22.2, 16.1, 18.1, 42.3 and 51.1 mAh g⁻¹ at the current of 0.1, 0.2, 0.5, 1, 2, 5, 0.2 and 0.1 A g⁻¹, respectively.

Figure S8. WT contour plots of Co-foil.

Figure S9. (a) Ex situ XRD patterns of S-Co₃O₄ electrodes collected after fully discharged and fully charged after 10 cycles at different current densities; (b) Ex situ Raman spectra of S-Co₃O₄ electrodes collected during the first and the second

diacharge/charge process.

For ex situ XRD, the fully charged electrodes at different current density are mainly Co_3O_4 accompanied by little residual Li₂O and Li₂CO₃ in SEI layer, while the fully discharged electrode is mainly Co metal and Li₂O. For ex situ Raman, 1C, 2D and 2C denote the first charge, the second discharge and the second charge, respectively. The peaks located at 190.9, 475.8 and 682.9 cm⁻¹ are related to Co_3O_4 , and the appearance of the broad peak at around 580.6 cm⁻¹ is due to Li₂O and the homogeneous phase Li_xCo₃O₄.¹

Figure S10. HRTEM images of SEI of fully oxidized S-Co₃O₄ after 10 cycles at (a) 1 A g⁻¹ and (b) 10 A g⁻¹. The LiF (yellow dotted line) lattice spacing corresponding to (111) is ~0.23 nm, the Li₂CO₃ (orange dotted line) lattice spacing corresponding to (-

110) is ~0.42 nm, (-112) is ~0.26 nm, and the Li_2O (blue dotted line) lattice spacing corresponding to (111) is ~0.27 nm. The green dotted line represents the organic component ROCO₂Li (OC = O) in the SEI.

The mosaic SEI was composed of randomly distributed organic and inorganic components at 10 A g⁻¹, which the organic component (ROCO₂Li) was an outer layer and the inorganic component was wrapped in an inner layer at 1 A g⁻¹. The layered configuration at 1 A g⁻¹ led to the poor flexibility of the SEI and the unsatisfactory stability of the LIB for long cycle. On the contrary, the random distribution of ROCO₂Li in the mosaic SEI at 10 A g⁻¹ could enhance the flexibility of the SEI, accelerate the Li⁺ transport and maintain good stability of the LIB.²

Figure S11. HRTEM image of the S-Co₃O₄ electrode after 2000 cycles at 10 A g⁻¹.

Figure S12. The initial three charge/discharge curves at a current density of 1 A g⁻¹ for Ketjenblack.

Ketjenblack and PVDF were mixed fully with a weight ratio of 9:1. Then made and tested in the same way as Co_3O_4 . The first discharge and charge specific capacities of Ketjenblack are 1200.0 mAh g⁻¹ and 289.6 mAh g⁻¹.

C0 ₃ O ₄	Voltage, V (vs. Li+/Li)	Capacity, mAh g ⁻¹	Cycling stability, ^{a)} mAh g ⁻¹	Refs.
RGO-Co ₃ O ₄ PNR Co ₃ O ₄ PNR	0.01-3	1118 @ 0.2 A g ⁻¹ 1049@ 0.2 A g ⁻¹	1118 @ 200th @ 0.5 A g ⁻¹ 526 @ 200th @ 0.5 A g ⁻¹	3
Co3O4@NGFs	0.01-3	766.4 @ 0.1 A g ⁻¹	408.4 @ 600th @ 2 A g^{-1}	4
H-Co3O4@IEH- Graphene	0.01-3	777 @ 0.2 A g ⁻¹	1015 @ 250th @ 0.2 A g ⁻¹	5

Table S1. Performances of recently reported LIBs (half-cell) based on Co₃O₄.

Co3O4 nanotubes	0.01-3	500 @ 0.05 A g ⁻¹	500 @ 100th @ 0.48 A g ⁻¹	6
Co3O4/graphene	0.01-3	800 @ 0.05 A g ⁻¹	935 @ 30th @ 0.05 A g^{-1}	7
Needle-like Co3O4 nanotubes	0.01-3	918 @ 0.05 A g ⁻¹	$380 @ 80th @ 0.05 A g^{-1}$	8
Co3O4NW arrays	0.01-3	700 @ 0.11 A g ⁻¹	450 @ 20th @ 20 C 240 @ 20th @ 50 C	9
C-doped Co3O4 HNTs	0.01-3	950 @ 0.5 A g ⁻¹	950 @ 300th @ 0.5 A g ⁻¹	10
ZnO-Co3O4@CC	0.01-3	1785 @ 0.2 A g ⁻¹	533.6 @ 400th @ 1 A g ⁻¹ 447.8 @ 400th @ 2 A g ⁻¹	11
HNc-Co3O4	0.01-3	1053 @ 0.1 mA cm ⁻¹	~600 @ 100th @ 0.1 mA cm ⁻¹	2
Co3O4(1000)	0.01-3	~650 @ 1 A g ⁻¹	1100 @ 150th @ 1 A g ⁻¹	12
Co3O4	0.01-3	~1200 @ 1 A g ⁻¹	927 @ 850th @ 1 A g ⁻¹	13
S-Co3O4	0.01-3	1686.7 @ 0.1 A g-1	511.2 @ 2000th @ 10 A g-1	This work

^{a)} (Cycling stability is expressed as the energy storage capacity retention after several charging/discharging cycles at a specific rate).

Table S2. Performances of recently reported LIBs (half-cell) based on different types

0	1	. • 1
ot.	anode	materials
U1	anouc	materials.

Types	Materials	Voltage, V (<i>vs</i> . Li ⁺ /Li)	Capacity, mAh g ⁻¹	Cycling stability, ^{b)} (capacity, rate, retention%)	Refs.
- Oxides -	Fe_3O_4 - α - Fe_2O_3	0.005-3	1100 (0.1 A g ⁻¹)	40 (1067, 0.1 A g ⁻¹ , 97%)	14
	γ -Fe ₂ O ₃ extracted from red mud	0.005-3	697 (0.15 A g ⁻¹)	60 (5433, 0.15 A g ⁻¹ , 78%)	15
	Fe ₃ O ₄ –HPGN	0.005-3	1002 (0.1 A g ⁻¹)	25 (900, 0.1 A g ⁻¹ , ~90%)	16

	SnO ₂ -TRG	0.005-2.5	1021 (0.1 A g ⁻¹)	100 (777, 0.5 A g ⁻¹ , 66%)	17
	SCM-TiO ₂	1-3	220 (0.15 A g ⁻¹)	250 (150, 0.15 A g ⁻¹ , 68%)	18
	CuCo ₂ O ₄ nano wall	0.01-3	836 (1.25C)	120 (550, 0.375C, 61%)	19
	MOF-derived CuO	0.01-3	535 (0.1 A g ⁻¹)	40 (481, 0.1 A g ⁻¹ , 90%)	20
Sulfides	Cu ₃ SnS ₄	0.01-3	1082 (0.2 A g ⁻¹)	950 (890, 0.5 A g ⁻¹ , 76%,)	21
	SnS ₂ -RGO-SnS ₂ layer by layer	0.01-3	1404 (0.1 A g ⁻¹)	200 (1357, 0.1 A g ⁻¹ , 97%) (909, 0.5 A g ⁻¹ , 90%)	22
	Fe ₃ SnC@CNF	0.01-3	573 (0.2 A g ⁻¹)	1000 (500, 0.2 and 1 A g ⁻¹ , 96%)	23
	VC@C	0.01-3	640 (0.1 A g ⁻¹)	1000 (440, 0.1 and 1 A g ⁻¹ , 82%)	24
- Carbides -	MXene	0.01-3	350 (0.1 A g ⁻¹)	1000 (330, 0.1 A g ⁻¹ , 94%)	25
	PMo ₁₂ @PPy/Ti ₃ C ₂ T _x	0.01-3	395 (0.1 A g ⁻¹)	300 (764, 0.1 A g ⁻¹ , 254%) 2000 (170, 3 A g ⁻¹ , ~340%)	26
Metal– – organic framework (MOF) –	Cu-BDC	0.01-2.5	194 (0.48 A g ⁻¹)	50 (161, 0.48 A g ⁻¹ , 83%)	27
	Mn-BTC	0.01-2	694 (0.103 A g ⁻¹)	100 (576, 0.103 A g ⁻¹ , 83%) (~400, 1 A g ⁻¹ , ~90%)	28
	Co-MOF (BDC)	0.01-3	1564 (0.1 A g ⁻¹)	700 (601, 0.1 and 0.5 A g ⁻¹ , ~67%) 1000 (435, 0.1 and 1 A g ⁻¹ , 76%)	29
	dual ligand Fe-MOF (DMA cation)	0.01-3	600 (0.25 A g ⁻¹)	100 (825, 0.25 A g ⁻¹ , 137%) 1100 (~460, 1 and 2 A g ⁻¹ , 99%)	30
Covalent- organic framework (COF)	Tp-Azo COF	0.01-3	623 (0.1 A g ⁻¹)	3000 (306, 1 A g ⁻¹ , 100%)	31
	IISERP-CON	0.01-3	720 (0.1 A g ⁻¹)	1000 (~580, 0.5 A g ⁻¹ , 98%)	32

	CH ₃ NH ₃ PbBr ₃	0.01-2	332 (0.2 A g ⁻¹)	200 (121, 0.2 A g ⁻¹ , 36%)	33
Hybrid perovskite	1D-benzidine lead	0.01-2.5	646 (0.1 A g ⁻¹)	50 (585.014 g ⁻¹ .91%)	34
	iodo bismuthate			(363, 0.1 A g , 51/6)	35
	I. ADB (1D)	0.01-2.5	520 (0.1 A g ⁻¹)	250 (~530, 0.1 A g ⁻¹ , ~62%)	
	II. IMB (0D)	0.01-2.5	450 (0.1 A g ⁻¹)	250 (~400, 0.1 A g ⁻¹ , ~77%)	
	III. ATB (1D)	0.01-2.5	230 (0.1 A g ⁻¹)	250 (~220, 0.1 A g ⁻¹ , ~44%)	
This work	S-C0 ₃ O ₄	0.01-3	1686.7 @ 0.1 A g ⁻¹	2000 (511.2, 10 A g ⁻¹ , 45%)	

^{b)} Cycling stability is expressed as the energy storage capacity retention and corresponding retention percentage after several charging/discharging cycles at a specific rate.

E. g:

"200 (121, 0.2 A g⁻¹, 36%)" means that the cell can cycle to 200^{th} at 0.2 A g⁻¹, with a 36% capacity retention of 121 mAh g⁻¹.

"1000 (435, 0.1 and 1 A g^{-1} , 76%)" means that the cell can cycle to 1000th at 1 A g^{-1} after activation at 0.1 A g^{-1} for several cycles, with a 76% capacity retention of 435 mAh g^{-1} .

Supplementary Reference

1. M. A. Islam, M. Zuba, V. DeBiase, N. Noviasky and C. J. Hawley, *Nanotechnology*, 2018, **29**, 075403.

- Y. Xiang, Y. Xu, Z. Yang, J. Na, A. Alowasheeir, M. D. Albaqami, A. Ahmed Awadh Bahajjaj, S. Wang, J. Yu and Y. Yamauchi, *Chem. Eng. J.*, 2022, 430, 132700.
- 3. J. Shi, X. Li, T. Yang, X. Tian, Y. Liu, S. Lei, Y. Song and Z. Liu, *Journal of Materials Science*, 2021, **56**, 7520-7532.
- Y. Chen, T. Wu, W. Chen, W. Zhang, L. Zhang, Z. Zhu, M. Shao, B. Zheng, S. Li, W. Zhang, W. B. Pei, J. Wu and F. Huo, *Chem Commun (Camb)*, 2020, 56, 5767-5770.
- D. Wu, C. Wang, H. Wu, S. Wang, F. Wang, Z. Chen, T. Zhao, Z. Zhang, L. Y. Zhang and C. M. Li, *Carbon*, 2020, 163, 137-144.
- 6. W. Y. Li, L. N. Xu and J. Chen, Adv. Funct. Mater., 2005, 15, 851-857.
- W. C. R. Z. S. Wu, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, H. M. Cheng, ACS nano, 2010, 4, 3187.
- 8. X. W. Lou, D. Deng, J. Y. Lee, J. Feng and L. A. Archer, *Adv. Mater.*, 2008, **20**, 258-262.
- 9. B. T. a. Y. G. Li, Y. Y. Wu, Nano Lett., 2008, 8, 265.
- 10. C. Yan, Y. Zhu, Y. Li, Z. Fang, L. Peng, X. Zhou, G. Chen and G. Yu, *Adv. Funct. Mater.*, 2018, **28**, 1705951.
- H. Chen, L. Deng, S. Luo, X. Ren, Y. Li, L. Sun, P. Zhang, G. Chen and Y. Gao, *J. Electrochem. Soc.*, 2018, 165, A3932-A3942.
- 12. J. Y. Cheong, J. H. Chang, S.-H. Cho, J.-W. Jung, C. Kim, K. S. Dae, J. M. Yuk and I.-D. Kim, *Electrochim. Acta*, 2019, **295**, 7-13.
- H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun and J. Lian, *Nat Commun*, 2014, 5, 4526.
- M. Biswal, A. Suryawanshi, V. Thakare, S. Jouen, B. Hannoyer, V. Aravindan, S. Madhavi and S. Ogale, *J. Mater. Chem. A*, 2013, 1, 13932-13940.
- A. Suryawanshi, V. Aravindan, S. Madhavi and S. Ogale, *ChemSusChem*, 2016, 9, 2193-2200.
- 16. A. Suryawanshi, V. Aravindan, D. Mhamane, P. Yadav, S. Patil, S. Madhavi and S. Ogale, *Energy Storage Materials*, 2015, **1**, 152-157.
- 17. D. Mhamane, V. Aravindan, D. Taneja, A. Suryawanshi, O. Game, M. Srinivasan and S. Ogale, *Compos. Sci. Technol.*, 2016, **130**, 88-95.
- 18. O. Game, T. Kumari, U. Singh, V. Aravindan, S. Madhavi and S. B. Ogale, *Energy Storage Materials*, 2016, **3**, 106-112.
- 19. M. Bhardwaj, A. Suryawanshi, R. Fernandes, S. Tonda, A. Banerjee, D. Kothari and S. Ogale, *Mater. Res. Bull.*, 2017, **90**, 303-310.
- 20. A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan and S. Ogale, *Nano Energy*, 2013, **2**, 1158-1163.
- 21. N. Sharma, D. Phase, M. O. Thotiyl and S. Ogale, *ChemElectroChem*, 2019, **6**, 1371-1375.
- Y. Jiang, D. Song, J. Wu, Z. Wang, S. Huang, Y. Xu, Z. Chen, B. Zhao and J. Zhang, ACS Nano, 2019, 13, 9100-9111.

- K. Roy, V. Chavan, S. M. Hossain, S. Haldar, R. Vaidhyanathan, P. Ghosh and S. B. Ogale, *ChemSusChem*, 2020, 13, 196-204.
- 24. M. Mahajan, K. Roy, S. Parmar, G. Singla, O. P. Pandey, K. Singh, R. Vaidhyanathan and S. Ogale, *Carbon*, 2020, **161**, 108-116.
- 25. A. Sengupta, B. V. B. Rao, N. Sharma, S. Parmar, V. Chavan, S. K. Singh, S. Kale and S. Ogale, *Nanoscale*, 2020, **12**, 8466-8476.
- 26. M. Mahajan, G. Singla and S. Ogale, *ACS Applied Energy Materials*, 2021, 4, 4541-4550.
- 27. R. Senthil Kumar, C. Nithya, S. Gopukumar and M. Anbu Kulandainathan, *Energy Technology*, 2014, **2**, 921-927.
- 28. S. Maiti, A. Pramanik, U. Manju and S. Mahanty, *ACS Appl Mater Interfaces*, 2015, **7**, 16357-16363.
- 29. C. Li, X. Hu, X. Lou, L. Zhang, Y. Wang, J.-P. Amoureux, M. Shen, Q. Chen and B. Hu, *J. Mater. Chem. A*, 2016, **4**, 16245-16251.
- 30. N. Sharma, S. Szunerits, R. Boukherroub, R. Ye, S. Melinte, M. O. Thotiyl and S. Ogale, *ACS Applied Energy Materials*, 2019, **2**, 4450-4457.
- 31. G. Zhao, Y. Zhang, Z. Gao, H. Li, S. Liu, S. Cai, X. Yang, H. Guo and X. Sun, *ACS Energy Letters*, 2020, **5**, 1022-1031.
- 32. S. Haldar, K. Roy, S. Nandi, D. Chakraborty, D. Puthusseri, Y. Gawli, S. Ogale and R. Vaidhyanathan, *Adv. Energy Mater.*, 2018, **8**, 1702170.
- 33. H. R. Xia, W. T. Sun and L. M. Peng, *Chem Commun (Camb)*, 2015, **51**, 13787-13790.
- M. Tathavadekar, S. Krishnamurthy, A. Banerjee, S. Nagane, Y. Gawli, A. Suryawanshi, S. Bhat, D. Puthusseri, A. D. Mohite and S. Ogale, *J. Mater. Chem. A*, 2017, 5, 18634-18642.
- 35. K. Roy, T. Li, S. Ogale and N. Robertson, *J. Mater. Chem. A*, 2021, **9**, 2689-2693.